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Researchers use a variety of descriptive statistics to describe data from a research sample. This chapter presents

methods of calculating, organizing, and displaying some descriptive statistics.

FREQUENCY DISTRIBUTIONS

Researchers begin their data analyses by imposing some order on their data. A simple listing of the raw data for

a variable rarely conveys much information, unless the sample is very small. Take, for example, the data shown

in Table 1, which represent fictitious resting heart rate values (in beats per minute or bpm) for 100 patients. It is

difficult to understand these data simply by looking at the numbers: We cannot readily see what the highest and

lowest values are, nor can we see where the heart rate values tend to cluster.

Ungrouped Frequency Distributions for Quantitative Variables

One of the first things that researchers typically do with data is to construct frequency distributions. A frequency
distribution is a systematic arrangement of data values—from lowest to highest or vice versa—together with a

count of how many times each value was observed in the dataset. Table 2 presents a frequency distribution for the
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Frequency Distributions: Tabulating and Displaying Data

TABLE 1 Fictitious Data on Heart Rate for 100 Patients, in Beats Per Minute

60 65 63 57 64 65 56 64 71 67

70 72 68 64 62 66 59 67 61 66

56 69 67 73 68 63 69 70 72 68

60 66 61 60 65 67 74 66 65 66

65 72 66 58 62 60 73 64 59 72

65 68 61 59 68 71 67 65 63 70

67 59 66 69 61 70 58 62 66 63

74 69 68 57 63 65 71 67 62 66

55 70 69 62 66 67 62 72 64 68

64 58 64 66 63 69 71 64 67 57

TABLE 2 Frequency Distribution of Heart Rate Values

Score (X) Tallies Frequency (f ) Percent (%)

55 | 1 1.0

56 || 2 2.0

57 ||| 3 3.0

58 ||| 3 3.0

59 |||| 4 4.0

60 |||| 4 4.0

61 |||| 4 4.0

62 |||| | 6 6.0

63 |||| | 6 6.0

64 |||| ||| 8 8.0

65 |||| ||| 8 8.0

66 |||| |||| | 11 11.0

67 |||| |||| 9 9.0

68 |||| || 7 7.0

69 |||| | 6 6.0

70 |||| 5 5.0

71 |||| 4 4.0

72 |||| 5 5.0

73 || 2 2.0

74 || 2 2.0

N � 100 � Σf 100.0 � Σ%

heart rate data. Now we can tell at a glance that the lowest value is 55, the highest

value is 74, and the value with the highest frequency (11 people) is 66.

TIP: Statistical software provides options for ordering variables in
ascending or descending order. We show ascending order in our examples,
but researchers preparing tables for journal articles may use reverse
ordering for conceptual or theoretical reasons.
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Frequency Distributions: Tabulating and Displaying Data

Researchers constructing a frequency distribution manually list the data values

(the Xs) in a column in the desired order, and then keep a tally next to each value for

each occurrence of that value. In Table 2, the tallies are shown in the second column,

using the familiar system of four vertical bars and then a slash for the fifth case. The

tallies can then be totaled, yielding the frequency (f) or count of the number of cases

for each data value.

In constructing a frequency distribution, researchers must make sure that the

list of data values is mutually exclusive and collectively exhaustive. The sum of the

frequencies must equal the number of cases in the sample.

Σf � N

where Σ � the sum of

f � the frequencies

N � the sample size

This equation simply states that the sum of (symbolized by the Greek letter sigma, Σ)

all the frequencies of score values ( f ) equals the total number of study participants (N).

A frequency count of data values usually communicates little information in and

of itself. In Table 2, the fact that five patients had a heart rate of 70 bpm is not very in-

formative without knowing how many patients there were in total, or how many pa-

tients had lower or higher heart rates. Because of this fact, frequency distributions al-

most always show not only absolute frequencies (i.e., the count of cases), but also

relative frequencies, which indicate the percentage of times a given value occurs. The

far right column of Table 2 indicates that 5% of the sample had a heart rate of 70.

Percentages are useful descriptive statistics that appear in the majority of research

reports. A percentage can be calculated easily, using the following simple formula:

% � (f � N) � 100

That is, the percentage for a given value or score is the frequency for that

value, divided by the number of people, times 100. The sum of all percentages must

equal 100% (i.e., Σ% � 100%). You will probably recall that a proportion is the

same as a percentage, before multiplying by 100 (i.e., proportion � f � N ).
Of course, researchers rarely use a tally system or manually compute percentages

with their dataset. In SPSS and other statistical software packages, once the data have

been entered and variable information has been input, you can proceed to run analyses

by using pull-down menus that allow you to select which type of analysis you want to

run. For the analyses described in this chapter, you would click on Analyze in the top

toolbar, then select Descriptive Statistics from the pull-down menu, then Frequencies.

Another commonly used descriptive statistic is cumulative relative frequency,

which combines the percentage for the given score value with percentages for all val-

ues that preceded it in the distribution. To illustrate, the heart rate data have been an-

alyzed on a computer using SPSS, and the resulting computer printout is presented in

Figure 1. (The SPSS commands that produced the printout in Figure 1 are Analyze

➞ Descriptive Statistics ➞ Frequencies ➞ hartrate.)
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Frequency Distributions: Tabulating and Displaying Data

Heart Rate in Beats per Minute

Frequency Percent
Valid 

Percent
Cumulative 

Percent

Valid 55 1 1.0 1.0 1.0

56 2 2.0 2.0 3.0

57 3 3.0 3.0 6.0

58 3 3.0 3.0 9.0

59 4 4.0 4.0 13.0

60 4 4.0 4.0 17.0

61 4 4.0 4.0 21.0

62 6 6.0 6.0 27.0

63 6 6.0 6.0 33.0

64 8 8.0 8.0 41.0

65 8 8.0 8.0 49.0

66 11 11.0 11.0 60.0

67 9 9.0 9.0 69.0

68 7 7.0 7.0 76.0

69 6 6.0 6.0 82.0

70 5 5.0 5.0 87.0

71 4 4.0 4.0 91.0

72 5 5.0 5.0 96.0

73 2 2.0 2.0 98.0

74 2 2.0 2.0 100.0

Total 100 100.0 100.0

Frequencies

FIGURE 1 SPSS printout of a frequency distribution.

In Figure 1, cumulative relative frequencies are shown in the last column,

labeled Cumulative Percent. The advantage of these statistics is that they allow you to

see at a glance the percentage of cases that are equal to or less than a specified value.

For example, we can see that 87.0% of the patients had heart rates of 70 bpm or

lower. This figure also has a column labeled Valid Percent. In this example, the values

in this column are identical to the values in the preceding column (Percent) because

there are no missing data—heart rate information is available for all 100 patients. It

is common, however, to have missing data in actual studies. The percentages in the

column Valid Percent are computed after removing any missing cases. Thus, if heart

rate data were missing for ten sample members, the valid percent for the value of 55

would be 1.1% ([1 � 90] � 100) rather than 1.0%.

Grouped Frequency Distributions

The values in the heart rate example ranged from a low of 55 to a high of 74, for a

total of 20 different values. For some variables, the range of values is much greater.

For example, in a sample of 100 infants, it would be possible to obtain 100 different

values for the variable birth weight measured in grams. An ordinary frequency table

to examine the birth weight data would not be very informative, because each value

would have a frequency of 1. When a variable has many possible values, researchers

4



Frequency Distributions: Tabulating and Displaying Data

1 For producing the frequency distribution in Figure 2, we created a new variable (we called it grouphr) by

using the Transform ➞ Compute commands. For example, we instructed the computer to set grouphr to

1 if hartrate �54 and hartrate �60. A procedure in SPSS called “Visual Binning” (within the

“Transform” set of commands) can also be used.

sometimes construct a grouped frequency distribution. Such a distribution

involves grouping together values into sets, called class intervals, and then tabulating

the frequency of cases within the class intervals. For example, for infants’ birth

weights, we might establish the following class intervals:

• 1,500 or fewer grams

• 1,501–2,000 grams

• 2,001–2,500 grams

• 2,501–3,000 grams

• 3,001 or more grams

In grouping together data values, it is useful to strike a balance between insuffi-

cient detail when too few groups are used, and lack of clarity when too many groups

are created. For example, if infants’ birth weight was grouped in clusters of 10 grams

(e.g., 1,001 to 1,010; 1,011 to 1,020, and so on), there would be dozens of groups. On

the other hand, for some purposes it might be inadequate to cluster the birth weight

data into only two groups (e.g., �2,000 grams and �2,000 grams). As a rule of thumb,

a good balance can usually be achieved using between four and 10 class intervals.

Once you have a general idea about the desired number of intervals, you can

determine the size of the interval. By subtracting the lowest data value in the dataset

from the highest data value and then dividing by the desired number of groups, an

approximate interval size can be determined. However, you should also strive for in-

tervals that are psychologically appealing. Interval sizes of two and multiples of five

(e.g., 10, 100, 500) often work best. All class interval sizes in a grouped frequency

distribution should be the same.

Given that the heart rate data resulted in a total of 20 different values, it might be

useful to construct a grouped frequency distribution. Clustering five values in a class

interval, for example, we would have four intervals. The printout for this grouped fre-

quency distribution is shown in Figure 2.1 In this distribution, we can readily see that,

for example, there were relatively few cases at either the low end or high end of the

distribution, and that there is a substantial clustering of values in the 65 to 69 interval.

On the other hand, there is also an information loss: For example, we cannot deter-

mine from this distribution what percentage of cases is 70 or below, as we could with

the original ungrouped distribution. Decisions on whether to use an ungrouped or

grouped distribution depend, in part, on the reason for constructing the distribution.

Frequency Distributions for Categorical Variables

When a variable is categorical or qualitative (i.e., measured on the nominal scale),

you can also construct a frequency distribution. As with quantitative variables, the

variable categories are listed in the first column, followed by frequencies and/or

relative frequencies in succeeding columns. A fictitious example of a frequency

distribution for the nominal variable marital status is shown in Table 3.

With categorical variables, it is usually not meaningful to display cumulative

relative frequencies because there is no natural ordering of categories along any di-

mension. In Table 3, for example, the ordering of the categories could be changed

without affecting the information (e.g., the category “Single, never married” could

come first). Several strategies can be used to order the categories in tables prepared

5



Frequency Distributions: Tabulating and Displaying Data

Grouped Heart Rate

Frequency Percent
Valid 

Percent
Cumulative 

Percent

Valid 55-59 bpm 13 13.0 13.0 13.0

60-64 bpm 28 28.0 28.0 41.0

65-69 bpm 39 39.0 39.0 80.0

70-74 bpm 20 20.0 20.0 100.0

Total 100 100.0 100.0

Frequencies

FIGURE 2 SPSS printout of a grouped frequency distribution.

for research reports. Two common approaches are ascending or descending order of

the frequencies, and alphabetical order of the categories. We ordered the categories

in Table 3 in descending order of frequency.

GRAPHIC DISPLAY OF FREQUENCY DISTRIBUTIONS

Frequency distributions can be presented either in a table, as in Tables 2 and 3, or

graphically. Graphs have the advantage of communicating information quickly, but

are not common in journal articles because of space constraints. By contrast, graphs

are excellent means of communicating information in oral and poster presentations

at conferences. They can also be useful to researchers themselves early in the analy-

sis process when they are trying to understand their data.

Bar Graphs and Pie Charts

When a variable is measured on a nominal scale, or on an ordinal scale with a small

number of values, researchers can construct a bar graph to display frequency infor-

mation. An example of a bar graph for the marital status data from Table 3 is present-

ed in Figure 3. A bar graph consists of two dimensions: a horizontal dimension (the X
axis) and a vertical dimension (the Y axis). In a bar graph, the categories are typical-

ly listed along the horizontal X axis, and the frequencies or percentages are displayed

on the vertical Y axis. The bars above each category are drawn to the height that indi-

cates the frequency or relative frequency for that category. In a bar graph for categor-

ical data, the bars for adjacent categories should be drawn not touching each other;

each bar width and the distance between bars should be equal. Researchers sometimes

indicate exact percentages at the top of the bars, as shown in Figure 3.

TABLE 3 Frequency Distribution of a Nominal-Level Variable: 
Patients’ Marital Status

Marital Status Frequency (f) Percent (%)

Married 124 49.6

Single, Never Married 55 22.0

Divorced 49 19.6

Widowed 22 8.8

Total N � 250 100.0%

6



Frequency Distributions: Tabulating and Displaying Data

Married

P
er

ce
nt

Marital Status of Study Participants

Single Divorced Widowed

50%

40%

30%

20%

10%

0%

49.6%

22.0%
19.6%

8.8%

FIGURE 3 Example of an SPSS bar graph for a nominal-level variable.

Marital Status of Participants
Marital status
of participants

Married

8.80%
Widowed

49.60%
Married

19.60% 
Divorced

22.00%
Single

Widowed
Divorced
Single

FIGURE 4 Example of an SPSS pie chart for a nominal-level variable.

2 To produce Figures 3 and 4, we used the SPSS commands Analyze ➜ Descriptive Statistics ➜
Frequencies ➜ Charts for the variable marstat, opting for the Bar Chart option first and the Pie Chart op-

tion next. We could also have used the commands Graphs ➜ Legacy Dialogs ➜ Bar (or Pie).

An alternative to a bar graph is a pie chart (sometimes called a circle graph),

which is a circle divided into pie-shaped wedges corresponding to the percentages.

Figure 4 presents an SPSS-generated pie chart for the marital status data. All the

pieces of the pie must add up to 100%. The pie wedges are generally ordered from

highest to lowest frequency, with the largest segment beginning at “12 o’clock.”2

7



Frequency Distributions: Tabulating and Displaying Data

0
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f

FIGURE 5 Example of a histogram: Heart rate data.

3 To produce the histogram in Figure 6, we used the Graphs ➜ Legacy Dialog ➜ Histogram commands

in SPSS for the variable hartrate. We could also have used the Analyze ➜ Descriptive Statistics ➜
Frequencies ➜ Charts commands.

Histograms

Frequency information for interval-level and ratio-level data can be displayed in a

histogram, which is a graphic display similar to a bar graph. In a histogram, however,

the bars touch one another because adjacent values are not distinct categories, but

rather contiguous scores on an ordered dimension.

An example of a histogram is shown in Figure 5, which is a graphic presenta-

tion of the heart rate data from Table 2. Data values are typically indicated on the X
axis, arranged from lowest to highest, and the frequencies (or percentages) are pre-

sented on the Y axis. The numbering on this vertical axis normally begins with 0, or

0%. The height of each bar corresponds to the frequency or percentage of cases with

the specified score value. Note that the line of the X axis is broken, a convention that

is sometimes used to designate a gap between 0 and the first number shown on the

scale (American Psychological Association, 2001).

A histogram can also be constructed from a grouped frequency distribution. As

with a tabled frequency display, it is advantageous to group score values when the

range between the highest and lowest scores is great. Most histograms display no more

than about 20 bars, as in Figure 5. When the scores are grouped, the values shown on

the horizontal axis are usually the midpoints of the score intervals. Computer programs

can be instructed to produce histograms. Figure 6 presents a histogram of the heart rate

data,3 grouped into nine score intervals. Note the curved line that has been superim-

posed on this chart, which will be explained later in this chapter.

Frequency Polygons

Another method of displaying interval-level and ratio-level data is with a frequency
polygon. A frequency polygon uses the same X axis and Y axis as for histograms, but

instead of vertical bars, a dot is used above each score value (or midpoint of a class

interval) to designate the appropriate frequency. The dots are then connected by a

solid line. Figure 7, created within SPSS, displays the heart rate data from Table 2 in

8



Frequency Distributions: Tabulating and Displaying Data

0
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FIGURE 6 Example of an SPSS histogram with grouped data.
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FIGURE 7 Example of an SPSS frequency polygon.

a frequency polygon. Frequency polygons typically show one score value below the

lowest obtained value and one score value above the highest obtained value.

Sometimes the line connecting the dots is brought down to the horizontal axis to

show a frequency of 0 for these two out-of-range values.

TIP: There are no rules about whether a histogram or a frequency polygon
should be used to display data. By convention, histograms are often the
preferred method of displaying data for discrete variables, while frequency
polygons are more likely to be used with continuous variables. From a visual
perspective, a frequency polygon is more likely than histograms to emphasize
the shape of a distribution, and highlights the notion of a continuum.
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Frequency Distributions: Tabulating and Displaying Data
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FIGURE 8 Examples of distributions with different shapes.

General Issues in Graphic Displays

Graphic displays of frequency distributions can communicate information at a glance,

but graphs can be constructed in such a way that the information is misleading or inef-

fective. One issue concerns the grouping of values in a grouped distribution. If the

heart rate data were clustered into two class intervals, for example (55–64 and 65–74),

the resulting histogram or frequency polygon would not be especially informative.

Another issue concerns the height and width of the display. The American

Psychological Association (2001) has published guidelines that are used by many

nursing research journals. These guidelines suggest that the height of a graph (i.e., the

height at the highest frequency) should be about two thirds the width of the X axis.

SHAPES OF DISTRIBUTIONS

Distributions of quantitative variables can be described in terms of a number of fea-

tures, many of which are related to the distributions’ physical appearance or shape

when presented graphically.

Modality

The modality of a distribution concerns how many peaks or high points there are. A

distribution with a single peak—that is, one value with a high frequency—is a

unimodal distribution. The distribution of heart rate data (Figure 7) is unimodal,

with a single peak at the value of 66.

Multimodal distributions have two or more peaks, and when there are exactly

two peaks, the distribution is bimodal. Figure 8 presents six distributions with

different shapes. In this figure, the distributions labeled A, E, and F are unimodal,

10



Frequency Distributions: Tabulating and Displaying Data

while B, C, and D are multimodal. Distributions B and D have two peaks, and thus

can also be described as bimodal.

Symmetry and Skewness

Another aspect of a distribution’s shape concerns symmetry. A distribution is

symmetric if the distribution could be split down the middle to form two halves that

are mirror images of one another. In Figure 8, distributions A through C are symmet-

ric, while D through F are not.

Distributions of actual study data are rarely as perfectly symmetric as those

shown in Figure 8. For example, the distribution of heart rate values in Figure 7 is

roughly symmetric, and researchers would likely characterize the data as symmetri-

cally distributed. Minor departures from perfect symmetry are usually ignored when

describing the shapes of data distributions.

In asymmetric distributions, the peaks are off center, with a bulk of scores

clustering at one end, and a tail trailing off at the other end. Such distributions are

often described as skewed, and can be described in terms of the direction of the

skew. When the longer tail trails off to the right, as in D and E of Figure 8, this is a

positively skewed distribution. An example of an attribute that is positively skewed

is annual income. In most countries, most people have low or moderate incomes and

would cluster to the left, and the relatively small numbers in upper income brackets

would be distributed in the tail. When a skewed distribution has a long tail pointing

to the left (Figure 8, F), this is a negatively skewed distribution. For example, if we

constructed a frequency polygon for the variable age at death, we would have a neg-

atively skewed distribution: Most people would be at the far right side of the distri-

bution, with relatively few people dying at a young age.

Skewness and modality are independent aspects of a distribution’s shape. As

Figure 8 shows, a distribution can be multimodal and skewed (D), or multimodal and

symmetric (B and C)—as well as unimodal and skewed (E and F), or unimodal and

symmetric (A).

Statisticians have developed methods of quantifying a distribution’s degree of

skewness. These skewness indexes are rarely reported in research reports, but they can

be useful for evaluating whether statistical tests are appropriate. A skewness index can

readily be calculated by most statistical computer programs in conjunction with fre-

quency distributions. The index has a value of 0 for a perfectly symmetric distribution,

a positive value if there is a positive skew, and a negative value if there is a negative

skew. For the heart rate data (Figure 7), the skewness index is �.20, indicating a very

modest negative skew.

TIP: In SPSS, if you request information about skewness within the
Frequency procedure, you will get a value for both the skewness index and
a standard error. As a rough guide, a skewness index that is more than
twice the value of its standard error can be interpreted as a departure from
symmetry. In our example, the skewness index of �.20 was smaller than
the standard error (.24), indicating that the heart rate distribution is not
markedly skewed.

Kurtosis

A third aspect of a distribution’s shape concerns how pointed or flat its peak is—that

is, the distribution’s kurtosis. Two distributions with different peakedness are super-

imposed on one another in Figure 9. Distribution A in this figure is more peaked, and

11



Frequency Distributions: Tabulating and Displaying Data

X

A–Leptokurtic

B–Platykurtic

f

FIGURE 9 Example of distributions with different kurtoses.

would be described as a leptokurtic (from the Greek word lepto, which means thin)

distribution. Distribution B is flatter, and is a platykurtic (from the Greek word

platy, which means flat) distribution.

As with skewness, there is a statistical index of kurtosis that can be computed

when computer programs are instructed to produce a frequency distribution. For the

kurtosis index, a value of 0 indicates a shape that is neither flat nor pointed (e.g.,

distribution A in Figure 8). Positive values on the kurtosis statistic indicate greater

peakedness, and negative values indicate greater flatness. For the heart rate data

displayed in Figure 8, the kurtosis index is �.55 (with a standard error of .48), indi-

cating a distribution that is only slightly more platykurtic than leptokurtic.

The Normal Distribution

A distribution that has special importance in statistical analysis is the normal distri-

bution (also known as the bell-shaped curve, normal curve, or Gaussian
distribution). A normal distribution is one that is unimodal, symmetric, and not too

peaked or flat. Figure 8 (A) illustrates a distribution that is normal. The normal dis-

tribution was given its name by the French mathematician Quetelet who, in the early

19th century, noted that many human attributes—such as height, weight, intelli-

gence, and so on—appeared to be distributed according to this shape. Most people

are in the middle range with respect to say, height, with the number tapering off at

either extreme: Few adults are under 5 feet tall, for example, and similarly few are

over 7 feet tall.

TIP: Because of the importance of normal distributions in statistical
analysis, some computer programs have a command that allows
researchers to examine visually the extent to which their data approximate
a normal distribution. For example, SPSS has an option to display the
actual distribution for a variable, with a normal distribution superimposed,
as illustrated in Figure 6. When this option is selected, it can readily be
seen how “far off” the distribution is from being normal.
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Frequency Distributions: Tabulating and Displaying Data

RESEARCH APPLICATIONS OF FREQUENCY DISTRIBUTIONS

Readers who have some experience reading research reports in professional journals

may have noticed that most journal articles do not present entire frequency distribu-

tions in either tabular or graphic form. This does not mean, however, that frequency

distributions are unimportant in data analysis. This section examines some of the

main reasons for constructing frequency distributions, and offers suggestions for

reporting frequency distribution information in reports.

The Uses of Frequency Distributions

There are many reasons for constructing frequency distributions within a research context,

several of which are described here.

1. Becoming familiar with the dataset Most researchers routinely begin their

data analysis by instructing a computer program to construct frequency distri-

butions on all or most variables in their dataset. Researchers want to make

sense of their data, and a good place to begin is to inspect the data after they

have been organized in frequency distributions. The initial inspection usually

involves tabled displays, as in Figure 1.

2. Cleaning the data Data that have been entered into a computer file for sub-

sequent analysis almost always contain some errors. One aspect of data cleaning
involves a search for outliers—that is, values that lie outside the normal range

of values for other cases. Outliers can be found by inspecting the values in a

frequency distribution, with special scrutiny of the highest and lowest values.

For some variables, outliers are legitimate. For example, a question about

sample members’ annual income might yield responses primarily in the

$20,000 to $200,000 range, but a response of $2 million could be legitimate. In

many cases, however, outliers indicate an error in data entry that needs to be

corrected. There are also situations in which frequency distributions reveal a

code that is impossible. For example, Figure 10 presents a frequency distribu-

tion for responses to the question, “Have you had a mammogram in the past 12

months?” In this example, only the codes 1 (yes) and 2 (no) are valid

responses. The codes 3 and 5 are wild codes resulting from data entry errors.

In this situation, the researcher would need to identify the four cases with the

improper codes (three cases coded 3 plus one case coded 5), determine the

correct codes, and then make the needed corrections. After data cleaning is

completed, a new set of frequency distributions should be run to make sure

that the problems have been corrected as intended.

TIP: Within SPSS, you can get help with outliers through the
commands Analyze ➜ Descriptive Statistics  ➜ Explore ➜ Statistics
for the variable in question. This will show the five highest and five
lowest values, and the case numbers with these values in the data file
so that corrections, if needed, can readily be made.

3. Inspecting the data for missing values Researchers strive for a rectangular
matrix of data—data for all participants for all key variables. This ideal is sel-

dom achieved, and so researchers must decide how to handle missing values. The

first step is to determine the extent of the problem by examining frequency dis-

tributions on a variable-by-variable basis. In Figure 10, only one case (1% of
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Mammogram in past year?

Frequency Percent
Valid 

Percent
Cumulative 

Percent

Valid Yes 23 23.0 23.2 23.2
No 72 72.0 72.7 96.0

3 3 3.0 3.0 99.0

5 1 1.0 1.0 100.0

Total 99 99.0 100.0

Missing System 1 1.0

Total 100 100.0

Frequencies

FIGURE 10 SPSS printout of a frequency distribution with wild codes and missing data.

the sample) had a missing value (in this case, a “system missing” or blank) on the

mammogram question.

4. Testing assumptions for statistical tests Many widely used inferential sta-

tistics are based on a number of assumptions. In statistics, an assumption is

a condition that is presumed to be true and, when ignored or violated, can

lead to misleading or invalid results. Many inferential statistics assume, for

example, that variables in the analysis (usually the dependent variables) are

normally distributed. Frequency distributions and the associated indexes for

skewness and kurtoses provide researchers with information on whether the

key research variables conform to this assumption—although there are addi-

tional ways to examine this. When variables are not normally distributed, re-

searchers have to choose between three options: (1) Select a statistical test

that does not assume a normal distribution; (2) Ignore the violation of the

assumption—an option that is attractive if the deviation from normality is

modest; or (3) Transform the variable to better approximate a distribution

that is normal. Various data transformations can be applied to alter the dis-

tributional qualities of a variable, and the transformed variable can be used

in subsequent analyses. Some data transformation suggestions are shown in

Table 4.

5. Obtaining information about sample characteristics Frequency distribu-

tions are used to provide researchers with descriptive information about the

background characteristics of their sample members. This information is often

of importance in interpreting the results and drawing conclusions about the

ability to generalize the findings. For example, if a frequency distribution

revealed that 80% of study participants were college graduates, it would be im-

prudent to generalize the findings to less well-educated people.

6. Directly answering research questions Although researchers typically use

inferential statistics to address their research questions, descriptive statistics

are sometimes used to summarize substantive information in a study. For ex-

ample, Lauver, Worawong, and Olsen (2008) asked a sample of primary care

patients what their health goals were. They presented several descriptive tables

with frequency and relative frequency (percentage) information. For instance,

as their primary health goal, 40% of participants (N � 24) said they wanted to

get in better shape and 30% (N � 18) wanted to lose weight. Only 6.7% (N � 4)

mentioned the desire to manage stress as their primary goal.
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TABLE 4 Data Transformations for Distribution Problems

Problem Type of Transformation SPSS Functiona, b

Positive skew, moderate Square root newvar � SQRT (var)

Positive skew, substantial Base 10 logarithmic newvar � LG10 (var)

Positive skew, severe Inverse newvar � 1 � var

Negative skew, moderate Reversed square root newvar � SQRT (K � var)

Negative skew, substantial Reversed base 10 logarithmic newvar � LG10 (K � var)

Negative skew, severe Reversed inverse newvar � 1 � (K � var)

aWithin SPSS, a new variable would be created through the Transform ➞ Compute Variable

command. The new variable (newvar) would be set equal to a mathematical function of the original

variable (var). The SQRT and LG10 functions are in the “Arithmetic” function group of the Compute

Variable dialog box.
bK is a value from which each score is subtracted, such that the smallest score � 1; K is set equal to

the highest score value in the distribution 	 1.

The Presentation of Frequency Information in Research Reports

Frequency distributions are rarely presented in full in research journal articles

because of space constraints and because full distributional information is rarely of

interest. Tables and figures take a lot of space and are usually reserved for presenting

more complex information. Take, for example, the marital status information shown

in Table 3 and in graphic form in Figures 3 and 4. This information could be more ef-

ficiently reported as text:

Nearly half (49.6%) of the sample was married, while 22.0% had never been

married, 19.6% were divorced or separated, and 8.8% were widowed.

Note that results are always reported in the past tense, not the present tense.

Results reflect measurements taken on a sample of study participants at a particular

time in the past.

The publication guidelines of the American Psychological Association (2001)

advise that tables should not be used for simple data presentations (e.g., one column

by five or fewer rows, or two columns by two rows). Frequency information is most

likely to be presented in a table or figure when several variables are being reported

simultaneously, or when there is a time dimension.

TIP: Whenever you include tables or figures in a report, they should be
numbered (e.g., Table 1, Figure 2), and cited in the text of the report.

Tables with frequency information often are used to summarize the back-

ground characteristics of study participants. For example, Liu and co-researchers

(2008) studied the effects of age and sex on health-related quality of life among pa-

tients with kidney transplantation. Table 5, an adaptation of a table in their report,

shows frequency distributions for three background variables. Two variables, sex

and race, are nominal-level variables. Age is a ratio-level variable, shown here in a

grouped frequency distribution with five class intervals. This method of presentation

is efficient, because it provides readers with a quick summary of important sample

characteristics.

Researchers are most likely to present substantive frequency information in

tables or graphs when there are several variables that have the same codes or score
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TABLE 5 Example of Table with Frequency Distribution Information
for Sample Description

Participants’ Characteristics Number %

Sex
Male 72 52.2

Female 66 47.8

Age

25–34 20 14.5

35–44 31 22.5

45–54 44 31.9

55–64 30 21.7
�65 13 9.4

Race

White/Caucasian 106 76.8

Other 32 23.2

Total Number 138

Adapted from the study by Liu et al. (2008) of patients with kidney transplantation, using

information from their Table 1 (p. 85), titled “Samples and Demographic Data.”

values, so that an entire matrix of frequency information can be presented simultane-

ously. For example, Kennedy-Malone, Fleming, and Penny (2008) studied prescrib-

ing patterns among gerontologic nurse practitioners. Their report included a table

(an abbreviated, adapted version of which is shown in Table 6) that showed the fre-

quency with which the nurse practitioners in their sample prescribed 29 medications

deemed inappropriate for people aged 65 and older. Such a matrix, with multiple

medications and three response categories, presents a wealth of descriptive frequency

information in a compact format.

In summary, frequency information is often presented in the text of a research

report—typically as percentages—rather than in graphs or tables. Yet, when multiple

variables or multiple data collection points can be presented simultaneously, a

TABLE 6 Example of Frequency Distributions for Multiple Variables

Medications Prescribed Inappropriately by Gerontological 
Nurse Practitioners (N � 234)

Medicationa
Never

%
Occasionally 

%
Frequently 

%

Diphenhydramine (Benadryl) 44 48 8

Cyclobenzaprine (Flexeril) 55 39 6

Amitriptyline (Elavil) 60 35 5

Ticlopidine (Ticlia) 74 23 3

Diazepam (Valium) 80 18 2

Chlorzoxazone (Parafon Forte) 90 9 1

Propantheline 98 2 0

aA selected, illustrative list; the original table included 29 medications

Adapted from Table 4 in Kennedy-Malone et al. (2008), titled “GNPs Patterns of Inappropriate

Prescribing Based on the 1997 Modified Beers Criteria.”
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frequency graph or table can be quite efficient. Even though graphs require consider-

able space, they do have an arresting quality that captures people’s attention, and so

are preferred in any type of oral presentation where space constraints are not an

issue. They also can be very effective if used sparingly in reports to emphasize or

clarify important pieces of information.

Tips on Preparing Tables and Graphs for Frequency Distributions

Although frequency distributions are not often presented in tables or graphs in research

reports, following are a few tips for preparing them. Some of these tips also apply to

displays of other statistical information.

• When percentage information is being presented, it is generally not necessary

(or desirable) to report the percentages to two or more decimal places. For

example, a calculated percentage of 10.092% usually would be reported as

10.1% or, sometimes, 10%.

• In reporting percentages, the level of precision should be consistent through-

out a specific table or figure. Thus, if the percentages in a distribution were

10.1%, 25%, and 64.9%, they should be reported either as 10%, 25%, and 65%

or 10.1%, 25.0%, and 64.9%.

• A reader should be able to interpret graphs and tables without being forced to

refer to the text. Thus, there should be a good, clear title and well-labeled

headings (in a table) or axes (in a graph). With frequency information, the

table should include information on the total number of cases (N ) on which the

frequencies were based. Acronyms and abbreviations should be avoided or

explained in a note.

• Occasionally there is a substantive reason for showing how much missing

information there was. For example, if we were asking people about whether

they used illegal drugs, it might be important to indicate what percentage of

respondents refused to answer the question. In most cases, however, missing

information is not presented, and only valid percentages are shown.

TIP: If you are preparing figures or charts for a poster or slide
presentation at a conference, charts created by programs like SPSS, Excel,
or Word may suffice. However, for publication in journals, it may be
necessary to hire a graphic artist to create professional images. You can
also consult books such as those by Few (2004) or Wallgren, Wallgren,
Persson, Jorner, and Haaland (1996) for additional guidance on how to
prepare statistical graphs.

Research Example

Almost all research reports include some information on

frequencies or relative frequencies. Here we describe a

published study that used frequency information exten-

sively.

Study: “Physical injuries reported in hospital visits for

assault during the pregnancy-associated period” (Nannini

et al., 2008).

Study Purpose: The purpose of this research was to de-

scribe patterns of physical injuries reported on hospital

visits for assault among women during their pregnancy

or postpartum period.

Research Design: Using hospital records (linked to

natality records) in Massachusetts during the period

2001 to 2005, the researchers obtained data for a sample
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of 1,468 women for 1,675 hospital visits for assault. The

first physical injury was noted for each visit that had a

physical injury diagnostic code (N � 1,528 visits).

Key Variables: The hospital records data were used to

describe the distribution of physical injuries by body re-

gion and nature of the injury. The variable body region, a

nominal-level variable, had five categories: head and

neck, spine and back, torso, extremities, and unclassifi-

able. Nature of injury, another categorical variable, had

six categories: fracture, sprain, open wound, contusion,

system wide, and other. The researchers also had data

regarding the women’s characteristics, including race/

ethnicity and marital status (nominal variables), education

(ordinal), and age (ratio level, but shown in a grouped

frequency distribution with five class intervals: �20,

20–24, 25–29, 30–34, and 35	).

Key Findings: The women in this sample of assaulted

pregnant or postpartum women tended to be young

(64.0% were under age 25) and single (82.6% were un-

married). The distribution of injuries indicated that the

women’s head and neck were the most commonly in-

jured body regions (42.2% overall). Injuries to the torso

were observed for 21.5% of the pregnant women and

8.7% of the postpartum women. In terms of nature of the

injury, the most prevalent type was contusions, observed

for 46.5% of the women.

Summary Points

• A frequency distribution is a simple, effective way

to impose order on data. A frequency distribution or-

ders data values in a systematic sequence (e.g., from

lowest to highest), with a count of the number of

times each value was obtained. The sum of all the

frequencies (Σ f ) must equal the sample size (N).

• In a frequency distribution, information can be pre-

sented as absolute frequencies (the counts), relative
frequencies (that is, percentages), and cumulative
relative frequencies (cumulative percentages for a

given value plus all the values that preceded it).

• When there are numerous data values, it may be

preferable to construct a grouped frequency
distribution, which involves grouping together

values into class intervals.

• Frequency distribution information can be pre-

sented in graphs as well as in tables. Graphs in-

volve plotting the score values on a horizontal axis

(the X axis) and frequencies or percentages on the

vertical axis (the Y axis).

• Nominal (and some ordinal) data can be displayed

graphically in bar charts or pie charts, while

interval and ratio data are usually presented in

histograms or frequency polygons.

• Data for a variable can be described in terms of the

shape of the frequency distribution. One aspect of

shape is modality: A unimodal distribution has

one peak or high value, but if there are two or

more peaks it is multimodal.
• Another aspect of shape concerns symmetry: A

symmetric distribution is one in which the two

halves are mirror images of one another.

• A skewed distribution is asymmetric, with the

peak pulled off center and one tail longer than the

other. A negative skew occurs when the long tail

is pointing to the left, and a positive skew occurs

when the long tail points to the right.

• A third aspect of a distribution’s shape is kurtosis:

Distributions with sharp, thin peaks are

leptokurtic, while those with smooth, flat peaks

are platykurtic.

• A special distribution that is important in statistics

is known as the normal distribution (bell-shaped

curve), which is unimodal and symmetric.

Exercises

The following exercises cover concepts presented in this chap-

ter. Answers to Part A exercises are indicated with a dagger (†)

are provided here. Exercises in Part B involve computer analy-

ses using the datasets and answers and comments are offered

on the Web site.

PART A EXERCISES

A1. The following data represent the number of times that a

sample of nursing home residents who were aged 80 or

older fell during a 12-month period.

Frequency Distributions: Tabulating and Displaying Data

†

18



0 3 4 1 0 2 0 1 2 0
1 0 0 1 2 5 0 1 0 1
0 2 1 0 1 1 3 2 1 0
1 3 1 1 0 4 6 1 0 1

Construct a frequency distribution for this set of data,

showing the absolute frequencies, relative frequencies, and

cumulative relative frequencies.

A2. Using information from the frequency distribution for

Exercise A1, answer the following:

(a) What percentage of the nursing home residents had at

least one fall?

(b) What number of falls was the most frequent in this

sample?

(c) What number of falls was the least frequent in this

sample?

(d) What percentage of residents had two or fewer falls?

(e) What is the total size of the sample?

(f) Are there any outliers in this dataset?

A3. Draw a frequency histogram for the data shown in Exercise

A1. Now superimpose a frequency polygon on the his-

togram. Using a ruler, measure the height and width of your

graphs: Is the height about two thirds of the width?

A4. Describe the shape of the frequency distribution drawn in

Exercise A3 in terms of modality and skewness. Is the

number of falls normally distributed?

A5. If you wanted to display information on patients’ age

using the data in Table 5, would you construct a histogram,

bar graph, frequency polygon, or pie chart? Defend your

selection, and then construct such a graph.

PART B EXERCISES

B1. Using the SPSS dataset Polit2SetA, create a frequency distri-

bution for the variable racethn. You can do this by clicking

on Analyze (on the top toolbar menu), then select

Descriptive Statistics from the pull-down menu, then

Frequencies.

B2. Re-run the frequency distribution for racethn. This time, use

the toolbar with icons that is second from the top. Put the

mouse pointer over the icons, from left to right. Find the icon

(likely to be the fourth one) that has a “Tool Tip” that reads

“Recall recently used dialogs” when you use the mouse

pointer.

Recall recently used dialogs

Click on this icon—it will bring up a list of recently used

analytic commands. The “Frequencies” command should

be at the top of the list because it is the one most recently

used, so using this “dialog recall” feature is a useful

shortcut when running multiple analyses with different

variables. For this run, when the Frequencies dialog box

appears, click on the “Charts” pushbutton, and then select

“Bar Chart” and “Percentages.” Compare the tabled versus

graphic results from Exercises B1 and B2.

B3. Now execute the SPSS Frequency command once again for

the variable higrade, highest grade of education for partici-

pants (Variable 6). (If you do this analysis right after the pre-

vious one, you will need to remove the variable racethn
from the variable list with the arrow push button, and then

move higrade into the list for analysis.) Examine the fre-

quency distribution information and answer these questions:

(a) What percentage of women completed 16 years of

education?

(b) What percentage of women had 10 years or less of

education?

(c) How many women had exactly 12 years of education?

B4. Now focus on missing data for the variable higrade, using

the same frequency distribution output as in Exercise B3.

Answer these questions:

(a) How many cases altogether had valid information, and

what percentage of the overall sample did these cases

represent?

(b) How many different types of missing values were there?

(c) What were the missing value codes (available by look-

ing at the Variable View screen of the Data Editor, or

in the Codebook)?

(d) What do these missing values codes mean?

B5. Re-run the frequency distribution for higrade. This time,

when the dialog box comes up, click the pushbutton for

“Statistics.” When a new dialog box appears that asks

which statistics you would like, click the “Skewness” and

“Kurtosis” options that appear in the lower right section

under the heading “Distribution.” Then return to the main

dialog box (Click Continue) and click OK. Examine the

resulting output and then answer these questions:

(a) What are the values for the skewness and kurtosis in-

dexes?

(b) Based on the information shown on the output,

would you conclude that this variable is normally

distributed?

(c) How would you describe the distribution of scores?

Frequency Distributions: Tabulating and Displaying Data
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This will bring up a dialog box (this is true in almost

all SPSS menu options) in which you can designate the

variables of interest and specify certain statistical or output

options. For this exercise, click on the variable racethn
(the fourth variable in the list) and then click on the arrow

in the middle of the dialog box to move this variable into

the list for analysis. Then click OK. Based on the output

you have created, answer these questions:

(a) What percentage of women in this study were “White,

not Hispanic”?

(b) Does the column for “Cumulative Percent” yield

meaningful information for this variable?
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B6. Re-run the frequency distribution for higrade a third time.

Now, when the initial dialog box opens, click the pushbut-

ton for “Charts.” When a new dialog box appears, click on

“Histogram” and “With normal curve.” Return to the main

dialog box and click on OK. Examine the resulting output

and then answer these questions:

(a) Did the SPSS program produce a histogram with orig-

inal values or class intervals—and, if the latter, what

class interval did the SPSS program use?

(b) Does the graph confirm your conclusions about the

normality of the distribution?

B7. To examine the issue of outliers, use the SPSS Explore

command by clicking on Analyze in the top toolbar, then

selecting Descriptive Statistics, then Explore. Move the

variable higrade (highest grade completed) into the Depen-

dent Variable list using the arrow; then move the variable id
(Identification number) into the slot “Label cases by:” At

the bottom left, where there are options for Display, click

on Statistics. Then click on the Statistics pushbutton and

click on Outliers. Then return to the main dialog box

(Continue) and hit OK. Examine the table labeled Extreme

Values. It will show the highest five values and the lowest

five values for the designated variable—i.e., potential out-

liers. Answer these questions:

(a) What is the grade for the highest value? How many

cases had this value? Would you consider this value an

outlier?

(b) What are the grades for the lowest value? How many

cases had each value? Would you consider these

values outliers?

(c) What are the ID numbers for those whose highest

grade completed was 1?

B8. Run Frequencies for the following three demographic/

background variables in the dataset: educational attainment

(educatn, variable number 5); currently employed (worknow,
variable 7); and current marital status (marital, variable 9).

Create a table (in a word processing program or by hand)

that would display this information, using Table 5 as a

model. Then write a paragraph summarizing the most

salient characteristics of the sample.  

†

†
†
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A1. Number of Falls f % Cum %

0 13 32.5 32.5
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4 2 5.0 95.0

5 1 2.5 97.5

6 1 2.5 100.0

Total 40 100.0
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f. There are no outliers, although it would perhaps be prudent to double check to see if the patients coded with five and six

falls actually fell five/six times.

A4. The distribution is unimodal and positively skewed. The data are not normally distributed.

20



Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Thousand Oaks, CA:

Sage.

Polit, D. F., & Beck, C. T. (2008). Nursing research: Generating and assessing evidence for nursing practice (8th ed.).

Philadelphia: Lippincott Williams & Wilkins.

Polit, D. F., & Sherman, R. (1990). Statistical power in nursing research. Nursing Research, 39, 365–369.

Barnett, T., Li-Yoong, T., Pinikahana, J., & Si-Yen, T. (2008). Fluid compliance among patients having haemodialysis: Can an

educational programme make a difference? Journal of Advanced Nursing, 61, 300–306.

Bennett, J., Young, H., Nail, L., Winters-Stone, K., & Hanson, G. (2008). A telephone-only motivational intervention to in-

crease physical activity in rural adults. Nursing Research, 57, 24–32.

Bu, X., & Wu, Y. B. (2008). Development and psychometric evaluation of the instrument: Attitude toward patient advocacy.

Research in Nursing & Health, 31, 63–75.

Certain, H., Mueller, M., Jagodzinski, T., & Fleming, M. (2008). Domestic abuse during the previous year in a sample of post-

partum women. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 37, 35–41.

Cha, E., Kim, K., & Burke, L. (2008). Psychometric validation of a condom self-efficacy scale in Korean. Nursing Research,
57, 245–251.

Chang, S., Wung, S., & Crogan, N. (2008). Improving activities of daily living for nursing home elder persons in Taiwan.

Nursing Research, 57, 191–198.

Cho, J., Holditch-Davis, D., & Miles, M. (2008). Effects of maternal depressive symptoms and infant gender on the interactions

between mothers and their medically at-risk infants. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 37, 58–70.

Good, M., & Ahn, S. (2008). Korean and American music reduces pain in Korean women after gynecologic surgery. Pain
Management Nursing, 9, 96–103.

Im, E. O., Chee, W., Guevara, E., Lim, H., & Shin, H. (2008). Gender and ethnic differences in cancer patients’ needs for help:

An Internet survey. International Journal of Nursing Studies, 45, 1192–1204.

Kowalski, S., & Bondmass, M. (2008). Physiological and psychological symptoms of grief in widows. Research in Nursing &
Health, 31, 23–30.

Lee, E., Fogg, L., & Menon, U. (2008). Knowledge and beliefs related to cervical cancer and screening among Korean American

women. Western Journal of Nursing Research, 30, 960–974.

Li, Y., Scott, C., & Li, L. (2008). Chinese nursing students’ HIV/AIDS knowledge, attitudes, and practice intentions. Applied
Nursing Research, 21, 147–152.

Mak, S. S., Yeo, W., Lee, Y., Mo, K., TRse, K., Tse, S., et al. (2008). Predictors of lymphedema in patients with breast cancer

undergoing axillary lymph node dissection in Hong Kong. Nursing Research, 57, 416–425.

Polit, D. F., & Beck, C. T. (2008). Is there gender bias in nursing research? Research in Nursing & Health, 31, 417–427.

Frequency Distributions: Tabulating and Displaying Data

GLOSSARY

Continuous variable A variable that can take on an infinite range of values between two points on a continuum (e.g., height).

Data analysis plan The overall plan for the analysis of research data that serves as a guide to answering the research questions and

interpreting the results.

Data analysis The systematic organization and synthesis of research data, and the testing of hypotheses with those data.

Data matrix A two-dimensional array of data (subjects variables).	
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Data The pieces of information obtained in a study.

Dataset The total collection of data on all variables for the entire research sample.

Dependent variable The variable that is hypothesized to depend on or be caused by another variable (the independent variable);

also called the outcome variable.

Descriptive statistics Statistics used to describe and summarize data (e.g., means, percentages, standard deviations).

Discrete variable A variable that has a finite number of values between any two points.

Independent variable The variable that is the hypothesized cause of or influence on the dependent variable.

Inferential statistics Statistics that rely on the laws of probability to help researchers draw conclusions about whether relation-

ships and characteristics observed in a sample are likely to occur in the population.+

Interval measurement A level of measurement that involves assigning numbers to indicate both the ordering on an attribute and

the distance between different amounts of the attribute.

Level of measurement A system of classifying measurements according to the nature of the measurement and the type of mathe-

matical operations to which they are amenable; the four levels are nominal, ordinal, interval, and ratio.

Measurement The assignment of numbers to objects to designate the quantity of an attribute, according to specified rules.

Missing values Values missing from a dataset for some participants as a result of such factors as skipped questions, refusals, with-

drawals from the study, failure to complete forms, or researcher error.

Multivariate statistics Statistical procedures for analyzing the relationships among three or more variables simultaneously.

Nominal measurement The lowest level of measurement, involving the assignment of characteristics into categories (e.g., fe-

males, category 1; males, category 2).

Operational definition The definition of a concept or variable in terms of procedures to be used to measure it.

Ordinal measurement A level of measurement that yields an ordering of a variable along a specified dimension.

Population The entire set of individuals (or objects) having some common characteristic(s) (e.g., all AIDS patients in the United

States).

Qualitative data Information that is in narrative (nonnumerical) form.

Quantitative data Information that is in a quantified (numerical) form.

Raw data The actual numerical values of collected data, prior to any transformations.

Relationship A bond or association between two or more variables.

Sample A subset of a population selected to participate in a study.

Statistical analysis Mathematical methods for organizing, summarizing, and drawing conclusions about quantitative data using

statistical procedures.

Univariate statistics Statistical procedures for analyzing a single variable at a time.

Variable An attribute of a person or object that varies (i.e., takes on different values).

Bias An influence that distorts the results and undermines study validity.

Categorical variable A variable that has discrete categories, such as a nominal-level variable (e.g., a person’s marital status).

Evidence-based practice A practice that involves making clinical decisions on the best available evidence, with evidence that is

from disciplined research and thus is often supported through statistical analysis.

Statistic A descriptive index calculated from sample data as an estimate of a population parameter.

Analysis A method of organizing data in such a way that research questions can be answered.

Control group Participants in an experiment (clinical trial) who do not receive the experimental intervention and whose perform-

ance provides a baseline against which the effects of the treatment can be measured.

Matrix A rectangular arrangement of numbers with m rows (representing one dimension) and n columns (representing another di-

mension, resulting in an m n configuration; examples include a correlation matrix, data matrix, and factor matrix.

Parameter An index describing a characteristic of a population.

Precision The extent to which random errors have been reduced, usually expressed in terms of the width of the confidence inter-

val around a parameter estimate.

Qualitative variable A variable measured on the nominal scale—i.e., a variable that conveys no quantitative information.
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Quantitative analysis The manipulation of numerical data through statistical procedures for the purpose of describing phenome-

na or assessing the magnitude and reliability of relationships among them.

Quantitative variable A variable that conveys information about the amount of an attribute—i.e., a variable measured on the or-

dinal, interval, or ratio scale.

Ratio measurement A level of measurement with equal distances between score units, and that has a true meaningful zero point

(e.g., weight in milligrams).

Research Systematic inquiry that uses orderly scientific methods to answer questions or solve problems.
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A distribution of data values for quantitative variables can be described in terms of three characteristics: its

shape, central tendency, and variability. This chapter focuses on statistics that describe central tendency and

variability, and also discusses indexes of position for scores within a distribution.

CENTRAL TENDENCY

Full frequency distributions for interval- or ratio-level variables are seldom presented in research reports be-

cause there is a more succinct, convenient way to summarize these distributions: by reporting an index of

central tendency. Central tendency refers to the location of a “typical” data value—the data value around

which other scores tend to cluster. Because a value is more likely to be typical if it is in the middle of a dis-

tribution than if it is at an extreme, the term central tendency has come to be used for this class of descriptive

statistics.

Central Tendency, 
Variability,

and Relative Standing

Central Tendency
The Mode

The Median

The Mean

Comparison of the Mode, the Median, and the Mean

Computers and Central Tendency

Variability
The Range

Interquartile Range

The Standard Deviation and Variance

Computers and Variability

Relative Standing
Percentile Ranks

Standard Scores

Research Applications of Central Tendency
and Variability

The Uses of Central Tendency

and Variability Indexes

The Presentation of Central Tendency

and Variability in Research Reports

Tips on Preparing Tables with Central Tendency

and Variability Indexes

Research Example
Summary Points
Exercises

From Chapter 3 of Statistics and Data Analysis for Nursing Research, Second Edition. Denise F. Polit. Copyright © 2010 by

Pearson Education, Inc. All rights reserved.
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The word average is the everyday term for central tendency. With regard to the

heart rate data, we could convey more useful information by reporting the sample’s

average heart rate than by reporting what percentage of cases had a heart rate of 55,

56, 57, and so on. Researchers usually do not use the term average, because there are

three alternative types of average: the mode, the median, and the mean.

The Mode

The mode is the numerical value in a distribution that occurs most frequently. Take,

for example, the following set of values:

20 21 21 22 22 22 22 23 23 24

We can readily see that the mode is 22, because this score occurred four times—a

higher frequency than for any other value. If we constructed a frequency polygon for

these 10 numbers, the peak in the graph would occur at the modal value of 22.

Although the mode is easy to determine, it has drawbacks as an index of central

tendency. One problem is that there may be two or more modes in a single distribution—

that is, the distribution might be multimodal, as in the following example:

20 20 20 21 22 23 24 25 25 25

Here, both 20 and 25 are the most frequently occurring numbers—both are

considered modes. In this example, we cannot characterize the distribution with a

single number if we use the mode to indicate central tendency. Another limitation is

that the mode tends to be a fairly unstable index. By unstable, we mean that the val-

ues of modes tend to fluctuate from one sample to another drawn from the same pop-

ulation. Given its instability, it is difficult to attach much theoretical importance to

the mode.

Because of these shortcomings, the mode is not used extensively in research,

except when the researcher is interested in describing typical (modal) values for

nominal-level variables. For example, using the frequency distribution information

from the study by Liu and colleagues (2008), we could characterize the participants

as follows: “The typical (modal) subject was a white, middle-aged male.”

The Median

A second descriptive statistic used to indicate central tendency is the median. The

median (sometimes abbreviated as Mdn) is the point in a data distribution that di-

vides the distribution into two equal halves: 50% of the score values lie above the

median, and the other 50% lie below the median. As an example, the median of the

following set of values is 25:

21 22 22 23 24 26 26 27 28 29

The point that has 50% above it and 50% below it is half way between 24 and 26.

Even though no one had a score of 25, the value of 25 is the median because it splits

the distribution exactly into two equal halves.
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To calculate the median, the data values must first be sorted, as in a frequency

distribution. The median is the middle value of all cases. If there is an even number

of cases, the median is the value halfway between the two middle ones, as in the

preceding example where the median was 25. If there are an odd number of cases,

the median is simply the value in the middle, as in the following example, where the

median is also 25:

22 23 23 24 25 26 27 27 28

In this example, the median is the value in the middle, or 25. Notice that,

in this example, it cannot be said that 50% of the cases are above and below 25: 4

out of 9 cases (44.4%) are above the value of 25, and 4 out of 9 cases (44.4%)

are below it. However, the number 25 can be thought of as the midpoint of an

interval extending between the values of 24.5 and 25.5. These are called

the real limits of a number. Thus, to find the median in this example, we

would use the midpoint between the number’s real limits, or (24.5 � 25.5)/

2 � 25.0.

Because the median is an index of the average location in a distribution of

numbers, the median is insensitive to the distribution’s actual numerical values.

Suppose we changed the last number in the previous example:

22 23 23 24 25 26 27 27 128

Although the ninth value in the distribution has increased from 28 to 128, the

median is still 25: It remains the point that divides the distribution into two equal

halves. Because of this characteristic, the median is often the most useful index

of central tendency when a distribution is highly skewed and one wants to find a

“typical” value.

The Mean

The most commonly used index of central tendency is the mean, the term used in

statistics for the arithmetic average. The equation for calculating the mean is as

follows:

where � the mean

� � the sum of

X � each individual data value

N � the number of cases

That is, the mean is computed by summing each individual score (�X ), and then

dividing by the total number of cases (N ). The mean is symbolized either as M or

—pronounced “X bar.” In research reports, one is more likely to see the symbol M,

whereas in statistics books is more often used.

As an example, let us take the set of nine scores whose median was 25:

X �
22 � 23 � 23 � 24 � 25 � 26 � 27 � 27 � 28

9
� 25.0

X
X

X�

X �
�X

N
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The value of the mean, unlike the median, is affected by every score in the dis-

tribution. Thus, although the median was unchanged at 25 when we replaced the 9th

score of 28 with 128, the mean would change markedly:

The mean has an interesting property that underscores why it is a good index

of central tendency: The sum of the deviations of all scores from their mean always
equals zero. That is, if the mean is subtracted from every score in a distribution, the

sum of these differences invariably is zero. As an example, consider the following

numbers, which have a mean of 5.0: 9, 7, 5, 3, and 1. Now, if we subtract the mean

from each score, we would obtain five deviation scores.

Score Mean Deviation Score

9 � 5 � 4

7 � 5 � 2

5 � 5 � 0

3 � 5 � �2

1 � 5 � �4

When the deviation scores are added, we obtain the sum of 0. It is this property of the

mean—the fact that it balances the deviations above it and below it—that makes the

mean an important index of central tendency.

Comparison of the Mode, the Median, and the Mean

In a normal distribution, the mode, the median, and the mean have the same value, as

illustrated in Figure 1. Distributions of real data, however, are rarely perfectly normal,

and thus the values of the three indexes of central tendency are typically not exactly the

same. When this is the case, the researcher must decide which index to report.

The mean is usually the preferred, and most widely reported, index of central

tendency for variables measured on an interval or ratio scale. The mean has many de-

sirable features, including the fact that it takes each and every score into account. It

is also the most stable index of central tendency, and thus yields the most reliable es-

timate of the central tendency of the population.

X �
22 � 23 � 23 � 24 � 25 � 26 � 27 � 27 � 128

9
� 36.1

X

Mean
Median
Mode

f

FIGURE 1 The mean, median, and mode in a normal distribution.
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In many situations the mean’s ability to capture every score value is an advan-

tage, but sometimes this feature is a disadvantage. Suppose we collected data on the

annual income of 10 study participants and obtained the following:

$17,000

$40,000

$40,000

$40,000

$52,000

$54,000

$55,000

$56,000

$60,000

$200,000

In this example, the mode is $40,000, the median is $53,000, and the mean is

$61,400. Despite the fact that 90% of the sample had annual incomes of $60,000 or

less, the mean is greater than this figure. Extreme scores can exert a powerful influ-

ence on the mean and result in a misleading picture of the distribution of values.

Thus, when the primary aim of summarizing a distribution is to describe what a “typ-

ical” value is, the median may be preferred. In this example, the value of $53,000

(the median) does a much better job of communicating the financial circumstances

of the sample than does the mean. In general, the median is a better descriptive index

when the data are highly skewed or when there are extreme, but valid, outliers. The

median may also be preferred for ordinal-level variables that cannot reasonably be

viewed as approaching interval-level measurement.

Figure 2 illustrates that in skewed distributions the values of the mode, the

median, and the mean are different. The mean is always pulled in the direction of

the long tail—that is, in the direction of the extreme scores. Thus, for variables that

are positively skewed (like income), the mean is higher than the mode or the median;

for negatively skewed variables (like age at death), the mean is lower.

In distributions that are close to being normal, researchers usually report only

the mean. When the distribution is asymmetrical, however, researchers sometimes

report two or more indicators of central tendency. When there are extreme values in

Positive Skew Negative Skew

Mode Mode

f

Median Median

Mean Mean

FIGURE 2 The mean, median, and mode in skewed distributions.
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the distribution (even if it is approximately normal), researchers sometimes report

means that have been adjusted for outliers. There are several alternative methods of

adjusting means, one of which is to calculate a trimmed mean that discards a fixed

percentage (usually 5%) of the extreme values from either end of the distribution.

TIP: The symbols for a sample mean (a descriptive statistic) are either
M or , whereas the symbol for the population mean (a parameter) is the
Greek letter � (pronounced mew). It is conventional to use Greek letters to
represent parameters, although these are rarely seen in actual research
articles because researchers almost always work with samples.

Computers and Central Tendency

Although it is not difficult to compute an index of central tendency, manual calcula-

tion can be time consuming if the sample size is large. Computers can be used to

compute all major descriptive statistics.

Computing central tendency indexes in statistical software is usually simple.

Because of this fact, researchers often compute all three indexes rather than making

an a priori decision about which is preferable. The commands to compute all three

indexes using SPSS for Windows would simply involve a few more “clicks” beyond

the commands to produce the frequency distribution: Analyze ➜ Descriptive

Statistics ➜ Frequencies ➜ Statistics, then click mean, median, and mode under

“Central Tendency.” (SPSS also computes means and other descriptive statistics in

the Analyze ➜ Descriptive Statistics ➜ Descriptives procedure.)

Computer programs will compute means for all variables, regardless of their

levels of measurement. If we instructed the computer to calculate the mean marital

status of participants, it would proceed to do so, but the information would not make

sense. The ease with which a computer can perform calculations should not lead re-

searchers to forego consideration of what is appropriate for the variable’s level of

measurement.

VARIABILITY

In addition to a distribution’s shape and central tendency, another important characteris-

tic is its variability. Variability refers to how spread out or dispersed the scores are—in

other words, how similar or different participants are from one another on the variable.

Two distributions with identical means and similar shapes (e.g., both symmet-

ric) could nevertheless differ considerably in terms of variability. Consider, for ex-

ample, the two distributions in Figure 3. This figure shows body weight data for two

hypothetical samples, both of which have means of 150 pounds—but, clearly, the

two samples differ markedly. In sample A, there is great diversity: Some people

weigh as little as 100 pounds, while others weigh up to 200 pounds. In sample B, by

contrast, there are few people at either extreme: The weights cluster more tightly

around the mean of 150.

X
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100 110 120 130 140 160 170 180 190 200150

Weight (in pounds)

Mean

BA

f

FIGURE 3 Two distributions with different variability.

We can verbally describe a sample’s variability. We can say, for example, that

sample A is heterogeneous (highly varied) with regard to weight, while sample B is

homogeneous. These verbal descriptors, however, are imprecise and open to subjec-

tive interpretations. Statisticians have developed indexes that express the extent to

which scores on quantitative variables deviate from one another in a distribution,

several of which are described here.

The Range

The range, the simplest measure of variability, is the difference between the highest

score and the lowest score in the distribution. In Figure 3, the range for sample A

is about 100 (200 � 100 � 100), while the range for sample B is about 50 (175 �
125 � 50). In research reports, the range is often shown as the minimum and maxi-

mum value, without the subtracted difference score.

The range provides a quick summary of a distribution’s variability, and is easy

to compute. The range also provides useful information about a distribution when

there are extreme values. For example, a researcher might want to know that the

range of values for annual income is (to use the example presented previously) from

$17,000 to $200,000 (i.e., a range of $183,000).

However, the range has drawbacks. Because the range is based on only two

values, it is highly unstable. For example, in another sample of 10 people, the annual

incomes might range from $40,000 to $50,000 (a range of only $10,000). Another

problem is that the range tends to increase with sample size: the larger the sample,

the greater the likelihood that an extreme value will be obtained. It is more likely, for

example, that a sample of 1,000 people will include a millionaire than a sample of

10 people. Because of these limitations, the range is rarely used as the only descriptive

index of variability.

Interquartile Range

The median is the score at the 50th percentile: it is the point below which 50% of the

cases fall. As we describe later in this chapter, percentiles can be computed at any

point in a distribution. The interquartile range or IQR is a variability index calcu-

lated on the basis of quartiles. The lower quartile (Q1) is the point below which 25%
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1 Some books show the SD formula with N rather than N – 1 in the denominator. N is appropriate for comput-

ing the SD for population values, and is sometimes used for computing the SD with sample data if there is no

intent to estimate population values. When population parameters are of interest, statisticians have shown that

it is appropriate to use N – 1 in the denominator. Statistical programs use N – 1 rather N in computing SDs.

of the scores lie, while the upper quartile (Q3) is the point below which 75% of the

scores lie. The interquartile range is the distance between these two values, or:

Thus, the IQR indicates the range of scores within which the middle 50% of the score

values lie. In Figure 3, sample A would have an IQR of about 40, while sample B

would have an IQR of about 20. Because the IQR is based on middle-range cases

rather than extremes, it is more stable than the range, but the IQR is rarely reported.

As we shall see, however, the IQR does play a role in the detection of outliers.

The Standard Deviation and Variance

The most widely used index of variability is the standard deviation (often abbreviated

as SD or s). Like the mean, the SD takes into account every score in a distribution.

Variability concerns differences among scores, and thus an index of variability

necessarily captures the degree to which scores are different from one another. In the

range and IQR, this notion of differences is indicated by a minus sign, designating

the difference between two values. The SD is also based on differences—in this case,

differences between every score and the value of the mean. Thus, the first step in

calculating a standard deviation is to calculate deviation scores. The formula for a

deviation score (often symbolized as x) is:

For example, if a person weighed 200 and the average weight of the sample were

150, that person’s deviation score would be 50.

Indexes of central tendency are useful because they offer a single numerical

value that describes the “average” score in a distribution. Researchers also want as

an index of variability a single number that describes the “average” amount of dis-

persion. This might lead you to surmise that a good indicator of variability could be

obtained by summing the deviation scores and dividing by the number of cases, to

obtain an average deviation. However, as we have already seen, the sum of deviation

scores is always equal to 0, i.e., �x � 0.

The standard deviation addresses this problem by squaring the deviation

scores before summing them and dividing by the number of cases. Then, to return to

the original unit of measurement, the square root is taken. The formula for the SD is:

The computation of a standard deviation is illustrated in Table 1. The first col-

umn shows the weights of 10 people. At the bottom of this first column, the mean is

computed to be 150.0 pounds. In the second column, a deviation score for each per-

son is calculated by subtracting the mean of 150.0 from each original weight value. In

the third column, each deviation score is squared, and the sum of these squared devi-

ation scores (x2) is calculated to be 6,000. At the bottom of the table, the SD is com-

puted: 6,000 is divided by nine (the number of cases minus one)1, and then the square

SD � B
gx 2

N � 1

x � X � X

IQR � Q3 � Q1

32



Central Tendency, Variability, and Relative Standing

TABLE 1 Example of the Computation of a Standard Deviation 

X x � X � X x2 � 1X � X 22
110 �40 1600

120 �30 900

130 �20 400

140 �10 100

150 0 0

150 0 0

160 10 100

170 20 400

180 30 900

190 40 1600
X � 1500� x � 0� x2 � 6000�

X � 150.0

X � 1500>10

SD �B
6000

9
� 2666.67 � 25.820

root is taken to bring the index back to the original units. The value of the SD of the

weights for the 10 people is 25.820 (or, rounding to one decimal place, 25.8).

What does the number 25.8 represent? While it is easy for most people to un-

derstand that the average weight in this example is 150.0, it is less easy to understand

the meaning of a standard deviation of 25.8. There are several ways to explain the

concept of an SD.

The SD of 25.8 signifies the “average” deviation from the mean. The mean in-

dicates the best single point in the distribution for summarizing a set of values, but

the SD tells us how much, on the average, the values deviate from that mean. The

smaller the SD, the better is the mean as the summary of a typical score. To take an

extreme case, if all 10 people in our example weighed 150 pounds, the SD would be

0, and the mean of 150.0 would communicate perfectly accurate information about

all the participants’ weights. At the other extreme, suppose the first five people

weighed 100 and the last five people weighed 200. In this case of extreme hetero-

geneity, the mean would still be 150.0, but the SD would be 52.7.

An SD is often easier to interpret in a comparative context. For example, look-

ing back at Figure 3, distributions A and B both had a mean of 150, but sample A

would have an SD of about 20, while sample B would have an SD of about 10. The

SD index communicates that sample A is much more heterogeneous than sample B.

Another way in which the SD can be interpreted concerns the evaluation of any

single score in a distribution. In our example of 10 subjects’ weights, the SD was

25.8. This value represents a “standard” of variability against which individual

weights can be compared. People with weights that are greater than 1 SD away from

the mean (i.e., less than 124.2 pounds or more than 175.8 pounds) have weights that

are farther away from the mean than the average. Conversely, weights between 124.2

and 175.8 pounds are closer to the mean than the average.

When data values are normally distributed, the standard deviation can be used

in an even more precise way to evaluate individual values. In a normal distribution,
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there are approximately 3 SDs above the mean, and 3 SDs below it, as shown in

Figure 4. This figure shows a distribution of scores with a mean of 500 and an SD of

100, which is similar to the distribution of scores for many standardized tests such as

the SAT or the Graduate Record Examination (GRE). When data are normally dis-

tributed, a fixed percentage of cases fall between the mean and distances from the

mean, as measured in SD units. Sixty-eight percent of the cases fall within 1 SD of

the mean: 34% are above the mean and 34% are below it. In the example shown in

Figure 4, nearly seven out of every 10 people obtained a score between 400 and 600.

A full 95% of the cases fall within 2 SDs of the mean. Only a small percentage of

cases (about 2.5% in each tail) are more than 2 SDs away from the mean. With this

information, it is easy to interpret an individual score. A person with a score of 600,

for example, obtained a higher score than 84% of the sample (i.e., 50% below the

mean and 34% between the mean and 1 SD above it).

The SD is often cited in research reports in conjunction with the mean, and is

the most widely used descriptive index of variability. However, another index of

variability, called the variance, plays an important role in inferential statistics. The

variance is simply the value of the standard deviation before the square root is taken,

as in the following formula:

In the example shown in Table 1, the variance is 666.67 (6000 � 9), which is

25.8202. Because the variance is not in the same measurement units as the original

data—in this example, it is in pounds squared)—the variance is rarely used as a de-

scriptive statistic.

TIP: The symbol for the population standard deviation (a parameter) is
the Greek letter r (sigma), but you will rarely, if ever, see this symbol in
research reports.

Var �
gx 2

N � 1
� SD2

200
–3SD

800
+3SD

700
+2SD

300
–2SD

600
+1SD

400
–1SD

500
X

68%

f

95%

99.7%

2.3% 2.3%13.6% 34.1% 34.1% 13.6%

FIGURE 4 Standard deviations in a normal distribution.
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Statistics
Heart Rate in Beats per Minute

N Valid 100.0000

Missing .0000

Mean 65.2100

Median 66.0000

Mode 66.0000

Std. Deviation 4.4953

Variance 20.2080

Range 19.0000

Percentiles 25 62.0000

50 66.0000

75 68.0000

FIGURE 5 SPSS printout of basic descriptive statistics.

Computers and Variability

In SPSS and other user-friendly statistical software, commands to calculate indexes

of variability are simple. The SPSS commands to compute the range, the SD, and the

variance are within the “Frequencies” (and also “Descriptives”) routine; the se-

quence is the same as for the central tendency indexes, except that different selec-

tions would be made in the “Statistics” dialog box.

Researchers usually instruct the computer to calculate indexes of central ten-

dency and variability simultaneously. In SPSS, we selected the following statistics

within the Frequencies procedure: mode, median, mean, standard deviation, vari-

ance, range, and quartiles (i.e., the 25th, 50th, and 75th percentiles). Figure 5 pres-

ents the printout that resulted. The Frequencies command in SPSS does not directly

compute the IQR, but from the information about the 25th and 75th quartile in

Figure 5, we could calculate the IQR.

RELATIVE STANDING

The central tendency and variability statistics discussed thus far allow researchers to

describe an entire distribution, but there are better indexes for interpreting individual

scores. In this section, we briefly discuss two indexes that provide information about

the position—or relative standing—of an individual score value within a distribution

of scores.

Percentile Ranks

One approach to expressing relative standing is to calculate the percentile rank of a

score. The percentage of scores in the distribution that fall at or below a given value is

the percentile rank of that value. As a rough approximation, a percentile rank is

comparable to the cumulative percentage of a score value in a frequency distribution.2

2 Determining the exact percentile rank of a score is complex. Those interested in the formula should

consult statistics textbooks such as those by McCall (2000) or Jaccard and Becker (2001).

Fictitious Data

60 65 63 57 64 65 56 64 71 67

70 72 68 64 62 66 59 67 61 66

56 69 67 73 68 63 69 70 72 68

60 66 61 60 65 67 74 66 65 66

65 72 66 58 62 60 73 64 59 72

65 68 61 59 68 71 67 65 63 70

67 59 66 69 61 70 58 62 66 63

74 69 68 57 63 65 71 67 62 66

55 70 69 62 66 67 62 72 64 68

64 58 64 66 63 69 71 64 67 57
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If we start with a percentile in mind, we can also determine which score cor-

responds to that percentile. A percentile is equal to one 100th of the distribution. We

have already seen that the median divides a distribution into two equal halves, that

is, at the 50th percentile. Quartiles divide the distribution into quarters, with 25% of

the scores falling at or below the 25th percentile, and so on. Deciles divide the dis-

tribution into tenths. As we shall see, percentiles are the basis for creating a graph

that can nicely summarize certain features of a distribution. Within SPSS, you can

determine the score value corresponding to any specified percentile within the

“Frequencies” routine.

Standard Scores

Percentile ranks provide an ordinal measure of relative standing. Another index of

relative standing, the standard score, provides information not only about rank but

also distance between scores. Standard scores are scores that are expressed in terms

of their relative distance from the mean. Researchers most often use standard scores

to make their data values more interpretable. For example, SAT scores are actually

standard scores—they do not represent the number of questions a person answered

correctly on the test.

A standard score (often called a z-score) is easy to compute once the mean and

standard deviation have been calculated. The formula is as follows:

That is, for each person, the deviation score (the raw score minus the mean) is divided

by the standard deviation to yield a standard score. This converts all raw scores to SD
units: A raw score that is 1 SD above the mean would be a z score of �1.0, while a

raw score 2 SDs below the mean would be a z score of �2.0. A score directly at the

mean would be a standard score of 0.0. The mean of a distribution of z scores is nec-

essarily 0, and the SD is always 1. The shape of the distribution of z scores is identi-

cal to the shape of the original distribution of scores.

As an example, consider once again the heart rate data. As we saw, the mean of

the distribution is 65.21 and the SD is 4.50 (Figure 5). The standard score for a person

with a heart rate of 70 would be 1.06 (z � [70.00 � 65.21] � 4.50 � 1.06). A heart rate

of 70 is just slightly greater than 1 SD above the mean. A raw score of 56, by contrast,

would equate to a z score of �2.05, about two standard deviations below the mean.

Sometimes it is more convenient to work with standard scores that do not have

negative numbers or decimals. Standard scores can be transformed to have any
desired mean and standard deviation. As an example, SAT and GRE scores are trans-

formed z scores that have a mean of 500 and an SD of 100. Many widely used cogni-

tive and personality tests (such as the Wechsler IQ test) are standardized to have a

mean of 100 and an SD of 15. The formula for converting raw scores to this particu-

lar standard score scale is as follows:

Standard Score100,15 � aaX � X

SD
b � 15b � 100

z �
X � X

SD
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In other words, the z score ( ) is multiplied by 15 (the desired

SD for the standardized scores), and the result is added to 100 (the desired mean). On

this particular scale, a raw score of 70 bpm for the heart rate data would equate to a

standard score of 115.9 (1.06 � 15 � 100 � 115.9). If we wanted to transform z
scores on a scale like the GRE or SAT, we would substitute the SD of 100 for 15 as

the multiplier in the preceding formula, and the mean of 500 would replace the ad-

dend of 100. On this scale, a heart rate value of 70 bpm would be a standardized

score of 606 (1.06 � 100 � 500 � 606) in this sample.

TIP: It does not make particularly good sense to convert heart rate data
to standard scores because the raw data are in units that are directly
interpretable. However, scores on many tests and psychological scales
whose units are not inherently meaningful may be easier to understand
when the raw scores have been standardized, especially for group
comparisons.

We saw earlier that, for normal distributions, there is a fixed percentage of

cases within SD units of the mean, so individual standard scores can readily be inter-

preted for normally distributed variables (Figure 4). A GRE score of, say, 700, is 2

SD units above the mean of 500, and so a score of 700 is higher than 97.7% of the

scores on this test (50% below the mean, plus another 47.7% between 500 and 700).

Z scores can be computed with a simple command within many computer pro-

grams. For example, to convert the variable hartrate to z scores, you would use the

Analyze ➞ Descriptive Statistics procedure and click on the box that says “Save

standardized values as variables.” This would add a new variable to the end of your

data file—in this case, that variable is automatically called zhartrat. The value for

this new variable would be computed for every case in the file, and the mean and SD
of this new variable would 0.0 and 1.0, respectively. If you wanted your standard

score to have a mean other than 0 and an SD other than 1.0, you would do this by cre-

ating a new variable yourself using the Compute Variable procedure.

TIP: The most commonly used transformed standard scores are those with
means of 500 with SDs of 100; means of 100 with SDs of 15; and means of
50 with SDs of 10. Standard scores with means of 50 and SDs of 10 are
sometimes called T scores.

RESEARCH APPLICATIONS OF CENTRAL
TENDENCY AND VARIABILITY

Descriptive indexes of central tendency and variability are widely used by re-

searchers. This section examines some of the major applications of these indexes and

discusses methods of effectively displaying such information in research reports.

The Uses of Central Tendency and Variability Indexes

For variables that are measured on an interval or ratio scale (and for many ordinal-

level variables as well), researchers routinely compute indexes of central tendency

and variability, paying particular attention to the mean and SD. We have already seen

that the mean and SD have an important application in the creation of standard

1X � X 2 � SD
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FIGURE 6 Boxplots for heart rate data: original and modified datasets.

scores. A few of the other major reasons for using such indexes are described in the

following section.

1. Understanding the data Researchers often develop a better understanding of

their data by examining their main study variables descriptively. Means and

SDs (in addition to frequencies and percentages) are almost always computed

for major variables measured on interval- or ratio-level variables before under-

taking more complex analyses. In research reports, researchers often present

information about central tendency and variability to orient readers before re-

porting the results of inferential statistics. For example, Budin and colleagues

(2008) undertook a randomized controlled trial that tested alternative interven-

tions to promote emotional and physical adjustment among patients with

breast cancer. Before reporting their main findings (which involved multivari-

ate inferential statistics), they presented a descriptive table that summarized

the means, SDs, and ranges on their dependent variables (scores on scales of

psychological well-being, health, and social adjustment) for each treatment

group at baseline.

2. Evaluating outliers Outliers are often identified in relation to the value of a

distribution’s IQR. By convention, a mild outlier is a data value that lies be-

tween 1.5 and 3.0 times the IQR below Q1 or above Q3. An extreme outlier is a

data value that is more that three times the IQR below Q1 or above Q3. For ex-

ample, for the heart rate data, the IQR is 6 and the score at Q1 is 62. A mild

lower outlier would be any value between 44 (62 � [3 � 6]) and 53 (62 �
[1.5 � 6]), and an extreme outlier would be a value less than 44—or, at the

other end of the distribution, above 86. In our data distribution, there are no

outliers. A graph called a boxplot (or box and whiskers plot) is a useful way to

visualize percentiles and to identify outliers. The left panel (A) of Figure 6

shows the boxplot for the original heart rate data for 100 people. A boxplot

shows a box that has the 75th percentile as its upper edge (here, at 68) and the

25th percentile at its lower edge (here, at 62). The horizontal line through the
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middle of the box is the median (here, 66). The “whiskers” that extend from

the box show the highest and lowest values that are not outliers, in relation to

the IQR, as defined earlier. This graph confirms that there are no outliers in the

original dataset. To illustrate what a computer-generated boxplot shows when

there are outliers, we added six extreme values to the original dataset: 40, 45,

and 50 at the lower end and 90, 95, and 100 at the upper end. Panel B of

Figure 6 shows the resulting boxplot. The six data values that we added all are

shown as outliers—outside the outer limits of the whiskers. Mild outliers are

shown with circles: Case number 106 with a value of 50 and case number 105

with a value of 45 are mild outliers, for example. Cases that are extreme out-

liers are shown with asterisks. When there are outliers, the first thing to do is to

see if they are legitimate values, or reflect errors in data entry. If they are true

values, researchers can decide on whether it is appropriate to make adjust-

ments, such as trimming the mean. (In SPSS, a lot of diagnostic information,

including boxplots and the value of IQR, is available through the Analyze ➜
Descriptive Statistics ➜ Explore procedure).

3. Describing the research sample As you know it is important to carefully de-

scribe major background characteristics of study participants so that the find-

ings can be properly interpreted. Many sample characteristics are more suc-

cinctly described through indexes of central tendency than through

frequencies. For example, Holditch-Davis, Merrill, Schwartz, and Scher

(2008) studied factors that predicted wheezing in prematurely born infants.

Their sample description included information about means and SDs for such

ratio-level characteristics as the infant’s gestational age, birthweight, days on

mechanical ventilation, and number of neurologic insults.

4. Answering research questions When a study is descriptive, researchers are

sometimes able to answer their research questions directly through the compu-

tation of descriptive statistics such as indexes of central tendency and variabil-

ity. For example, one of the aims of a study by Miller, Alpert, and Cross (2008)

was to describe levels of obesity in nurses from six regions of the United

States. They reported the means, medians, standard deviations, and ranges for

values of the body mass index (BMI) for 760 nurses who participated in the

study, by their state of residence.

The Presentation of Central Tendency
and Variability in Research Reports

Measures of central tendency and variability are reported in the vast majority of re-

search reports. They are usually reported either directly in the text or in tables.

Means are occasionally presented in graphic form.

Decisions about presenting information in tables or in the text should be based

primarily on efficiency. If only one or two descriptive statistics are being reported

(for example, the sample’s mean age and mean number of days hospitalized), it is

probably better to present this information in the text. However, if there are descrip-

tive statistics for multiple variables that are conceptually related, a table is likely to

be the most effective method of presentation. At a minimum, researchers typically

report means and SDs, and often ranges as well. If the number of cases varies from

one variable to the next, the Ns should also be presented. If a data distribution is

skewed, medians may be preferred in lieu of (or in addition to) means.

Graphs are most likely to be used to display central tendency information

when the researcher wants to emphasize contrasts. For example, boxplots are some-

times presented for two or more groups of participants (e.g., experimentals versus
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FIGURE 7 Example of a graph plotting means over time.

controls). Graphs are also used to great advantage to plot means over time. Mean values

typically are plotted on the Y (vertical) axis, while the time periods are plotted along

the X (horizontal) axis. Occasionally, researchers display this information in a

histogram-type format with bars drawn to a height indicating a mean value. More

often, however, means are plotted using dots that are connected by a straight line,

creating a line graph. For example, suppose we were interested in studying the

mood states of cancer patients who received radiation therapy over a 3-month period.

Using the Profile of Mood States (POMS), which consists of six subscales, we could

collect data on patients’ moods prior to radiation and then at 1, 2, and 3 months after

treatment. Mean scores on the POMS subscales over time could then be displayed in

a graph, such as the one shown in Figure 7.

Tips on Preparing Tables with Central
Tendency and Variability Indexes

Here are some suggestions for enhancing the presentation of central tendency and

variability indexes in tables.

• It is usually better not to combine in one table variables for which different

types of descriptive statistics are appropriate. For example, if some variables

are better described with percentages (nominal-level variables), while others

are better described using means (interval- or ratio-level variables), two sepa-

rate tables may be necessary. The exception is that a single table is often used

for displaying the background characteristics of a sample, regardless of the

level of measurement of the variables.

• Readers can usually compare numbers down a column more readily than across

a row. For this reason, variable names are usually listed along the left in the first

column, together with any needed information about the unit of measurement

(e.g., grams, years, etc.). The descriptive statistics being presented are named

across the top row. Table 2, which we describe in the next section, exemplifies

this format.
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TABLE 2 Example: Table Showing Central Tendency and Variability

Mean SD Range of Values

Age (years) 81.0 8.4 —

Number of comorbidities 8.8 2.5 —

Mini-Mental State Examination Score 16.0 5.6 —

Cortisol, 9–9:30 A.M. (µg/dL) 0.48 0.32 0.07–1.35

Cortisol, noon–4:30 P.M. (µg/dL) 0.19 0.05 0.05–0.51

Cortisol, 6:45–7:15 P.M. (µg/dL) 0.29 0.22 0.07–0.79

Adapted from Table 1 of Woods et al. (2008). The table was titled “Resident characteristics, age, gender,

MMSE, co-morbidities, and salivary cortisol for the UWM (N � 22) and UCLA (N � 16) studies.” Only

data for the University of Wisconsin Milwaukee site (UWM) are shown here.

• There are no rules for ordering the variables that appear in a table of descrip-

tive statistics. If there is a meaningful conceptual ordering (for example, de-

pendent variables might be ordered to correspond to a set of hypotheses), this

is a highly effective approach. If the values of the statistics themselves can be

meaningfully ordered (e.g., in ascending or descending order of the means),

this is advantageous to the reader. For example, Polit and Beck (2008) studied

whether there was gender bias in nursing research—i.e., whether participants

in nursing studies are disproportionately female. One table showed the mean

percentage female for studies in different nursing specialty areas, listed in

order of declining mean values.

• Researchers have adopted several different conventions for displaying means

and SDs in tables. One option is to list the means and SDs in separate columns,

as in Table 2. Sometimes, to save space, researchers place the SD in parenthe-

ses directly next to the mean. For example, the first entry in Table 2 would then

be 81.0 (8.4). A third method is to present the SD next to the mean, preceded

by “	” (e.g., 81.0 	 8.4).

• In tables with central tendency and variability information, it may be desirable

to display other information at the same time. For example, in addition to the

actual range of score values, researchers sometimes include the theoretical

range (i.e., the minimum and maximum score that is possible for the measure

being used). When variables have been measured by psychosocial scales (e.g.,

measures of depression, self-esteem, and so on), researchers sometimes present

the reliability coefficients3 of the scale in the same table as the means and SDs.

• Means and SDs are usually reported to one or two decimal places. Greater pre-

cision is almost never necessary. Within a column of information, the level of

precision should be the same.

3 A reliability coefficient is a quantitative index of how reliable or consistent a measure is.
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Salivary cortisol measurements were obtained in the

morning, afternoon, and evening on a single day.

Key Variables: The researchers described their study

participants in terms of sex (73% were female), age,

number of medical comorbidities, and scores on the

MMSE. The main outcome variables were the cortisol

levels measured at different times of the day.

Key Findings: The results were similar in the two

sites, so we present information here for the

Milwaukee site only. Table 2 shows means, SDs,

and—for cortisol values—ranges for the study vari-

ables. Participants were, on average, 81.0 years old

and had 8.8 comorbidities. Their average score on the

MMSE was 16.0, which is considered moderate de-

mentia. The researchers also presented boxplots that

showed cortisol levels at different times of the day for

patients with different salivary profiles. The re-

searchers concluded that cortisol assay is viable in

nursing home settings and noted that the values

showed range and variability, often consistent with

normal adult patterns.

• A data distribution for a quantitative variable can

be described in terms of shape, central tendency,

and variability.

• Indexes of central tendency are numerical de-

scriptions of a “typical” or average data value,

usually from the center of the distribution. The

three most widely used indexes of central tendency

are the mode, the median, and the mean.

• The mode is the score value that occurs most fre-

quently in a distribution.

• The median (Mdn) is the point in the distribution

above which and below which 50% of the cases

fall (i.e., the score at the 50th percentile).

• The mean (M or ) is the arithmetic average,

computed by adding together all score values and

dividing by the number of cases. Unless data are

severely skewed, the mean is the preferred index

of central tendency because of its stability and

utility in other statistical procedures.

• Indexes of variability yield a quantitative measure

of how dispersed or spread out are the data values

in a distribution. The most widely used indexes of

X

Summary Points

Indexes of central tendency and variability are reported

in the vast majority of research reports. Below we pro-

vide a brief summary of the descriptive statistics reported

in a nursing study.

Study: “Using saliva to measure endogenous cortisol in

nursing home residents with advanced dementia”

(Woods et al., 2008)

Study Purpose: The researchers cited studies suggesting

that elevated cortisol could amplify dementia neu-

ropathology in certain areas of the brain. The purpose of

their study was to assess the feasibility of saliva collec-

tion for measuring cortisol in nursing home residents

with advanced dementia. The research questions were:

(1) Can sufficient saliva be collected? and (2) Do the

cortisol values exhibit enough variability for meaningful

interpretation?

Research Design: Data were collected from residents

aged 65 and older who were living in nursing homes for

2 months or more in Milwaukee (N � 22) or Los

Angeles (N � 16). Dementia severity was evaluated

using the Mini Mental State Examination (MMSE).

Research Example

variability are the range, the interquartile range,

and the standard deviation.

• The range is the highest score minus the lowest

score.

• The interquartile range (IQR) is the score at the

75th percentile or third quartile (Q3) minus the

score at the 25th percentile or first quartile (Q1).

• IQRs are most often used to define outliers. A mild
outlier is a data value that lies between 1.5 and 3.0

times the IQR, below Q1 or above Q3. An extreme
outlier is a data value that is more than three times

the IQR, below Q1 or above Q3.

• The standard deviation (SD) is an index that cap-

tures how much, on average, scores deviate from the

mean. It is calculated by summing all the squared

deviation scores (each person’s raw score minus the

mean), dividing by N – 1, and then taking the square

root. It is the most widely used index of variability.

• In a normal distribution, 95% of all scores fall

within 2 SDs below and above the mean.

• The variance is an index of variability equal to the

standard deviation, squared.
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• Indicators of relative standing or position provide

information about individual score values in a dis-

tribution. The percentage of scores in the distribu-

tion that fall at or below a given value is the

percentile rank of that value. Percentiles divide a

distribution into one hundredths, quartiles divide

it into fourths, and deciles divide it into tenths.

• Another index of relative standing is the standard
score, which is a score expressed as relative dis-

tances from the mean, in standard deviation units.

A standard score (often called a z-score) uses this

formula: z � X (a score value) minus , divided

by SD.

X

• A boxplot (or box-and-whiskers plot) is a graph

based on percentiles. It shows a box whose upper

and lower ends indicate the values corresponding

to the 25th and 75th percentile, a horizontal line

indicating the median (50th percentile), and

“whiskers” or lines extending above and below the

box indicating the range of values not considered

outliers.

• When there are outliers, researchers sometimes

make adjustments to the mean, such as calculating

a trimmed mean, which involves calculating a

mean after removing a fixed percentage of cases

(e.g., 5%) from either end of the distribution.

Exercises

The following exercises cover concepts presented in this chap-

ter. Answers to Part A exercises that are indicated with a dagger

(†) are provided here. Exercises in Part B involve computer

analyses and answers and comments are offered on the Web site.

PART A EXERCISES

A1. The following numbers represent the scores of 30 psychi-

atric inpatients on a widely used measure of depression

(the Center for Epidemiologic Studies-Depression scale).

What are the mean, the median, and the mode for these

data?

PART B EXERCISES

B1. Using the SPSS dataset Polit2SetA, determine the mean,

range, standard deviation, and variance for the variable

age1bir (Participants’ age at first birth). To do this, click

on Analyze (on the top toolbar menu), then select

Descriptive Statistics from the pull-down menu, then

Descriptives. When the dialog box appears, move the vari-

able age1bir into the variable list, then click the pushbut-

ton labeled Options. Click on Mean (at the top), then Std.

Deviation, Variance, and Range under “Dispersion.” What

are the values of these descriptive statistics?

B2. Now, for the same variable (age1bir), determine the medi-

an, mode, and quartile values, using the Frequencies pro-

cedure (Analyze ➞ Descriptive Statistics ➞ Frequencies).

When the dialog box appears, “uncheck” the box that says

“Display Frequency Tables.” (Why do you think we rec-

ommended this?) Move age1bir into the variable list, then

click the Statistics pushbutton. In the upper left corner, for

Percentiles, click quartiles. For Central Tendency, click

mean, median, and mode. For Dispersion, click all options

except Std. Error. Now, answer these questions: (a) What

are the values of the median and mode? (b) Are the values

for the mean, SD, and so on the same as in Exercise B1?

(c) What are the quartile values? (d) What is the value of

the IQR? (e) Based on the three indicators of central ten-

dency, what can you infer about the shape of the 

distribution?

B3. In this next exercise, perform analyses relating to outliers,

again with the variable age1bir. Using the Explore procedure

(Analyze ➞ Descriptive Statistics ➞ Explore) put age1birth
into the Dependent List when the dialog box appears, and put

Identification number in the box that says “Label Cases by.”

Then, at the bottom left, click on “Both” for type of display,

i.e., both Statistics and Plots. Click the Statistics pushbutton

41 27 32 24 21 28 22 25 35 27
31 40 23 27 29 33 42 30 26 30
27 39 26 34 28 38 29 36 24 37

130 110 160 120 170
120 150 140 160 140

†

†

†

†

†

†

If the values of these indexes are not the same, discuss

what they suggest about the shape of the distribution.

A2. Find the medians for the following distributions:

(a) 1 5 7 8 9

(b) 3 5 6 8 9 10

(c) 3 4 4 4 6 20

(d) 2 4 5 5 8 9

A3. For which distribution in question A2 would the median

be preferred to the mean as the index of central tendency?

Why?

A4. The following ten data values are systolic blood pressure

readings. Compute the mean, the range, the SD, and the

variance for these data.

A5. For each blood pressure value in question A4, compute a z
score. Then, transform these z scores to standard scores

with a mean of 500 and an SD of 100.

†

†
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and click Descriptives, Outliers, and Percentiles, then

Continue. Now, back in the original dialog box, click the

Plots pushbutton. Under Boxplots, click on Factor levels to-

gether, unselect stem-and-leaf plot if it is checked, then hit

Continue. Now run this procedure (click OK) and answer the

following questions: (a) In the table of Descriptive Statistics,

what is the value of the trimmed mean? What percent of out-

liers does SPSS trim in calculating this statistic? Is the

trimmed mean different from the untrimmed mean? (b) Does

this table indicate the value of the IQR—and, if so, is the

value the same as your own calculations in Exercise B2?

(c) Does the skewness index in this table suggest a skew? If

so, in which direction? (d) What does the kurtosis index in

this table suggest? (e) Looking at the Percentile Table (ignor-

ing information on Tukey’s Hinges), what age is at the 5th

percentile? What age is at the 95th percentile? Explain the

bearing of these values on the calculation of the trimmed

mean. (f) Looking at the table for Extreme Values, what is

the highest value, and which case corresponds to that value?

What is the lowest value, and which case corresponds to that

value? (g) Looking at the boxplot, are there any outliers? Are

there outliers at the lower end (below Q1)? If so, how

many—and are they “mild” or “extreme”? Are there outliers

at the upper end (above Q3)? If so, how many—and are they

“mild” or “extreme”? (h) Are the outliers and extreme values

at either end plausibly real values, or do you think they rep-

resent data entry errors?

B4. In this exercise, you will create a new variable (crowded)

and then generate z scores for that variable. The new vari-

able will be an index of how crowded participants were in

their residences. To create crowded, you will instruct the

computer to divide the number of rooms in the household

(rooms) by the total number of people living in the house-

hold (hhsize). So, if there are two people living in four

rooms, the value of crowded would be 2.0 (i.e., two rooms

per person). In SPSS, when new variables are created they

are automatically put at the end of the file, unless you take

steps for a different placement, which we do not explain here.

From the main toolbar, click Transform, then select Compute.

In the dialog box, type the name of the new variable

(crowded) in the box labeled New Variable. Click the

pushbutton directly below this (Type & Label) and give the

variable a longer label that will appear on output (e.g.,

Number of rooms per person in HH). Now, on the right

side of the dialog box, you need to instruct the computer

how to calculate this new variable. Find rooms in the list,

and click on the right arrow to move this variable into the

box that says “Numeric expression.” Next, type in a slash

(/), which is the symbol for division. Then, from the vari-

able list, find hhsize and use the arrow to insert it into the

expression. The expression should read “rooms / hhsize.”

Now click OK to create the variable, setting crowded equal

to number of rooms divided by household size. Now run

Analyze ➞ Descriptives Statistics ➞ Descriptives for

crowded. In the opening dialog box, click the option that

says “Save standardized values as variables.” When you

have done this, run Descriptives again for the new standard

score, which will appear as the last variable in the file.

Then answer the following questions: (a) What is the mean

and SD for the variable crowded? What is the range? What

does this information mean? (b) What is the name that

SPSS assigned to the standard score it created for

crowded? (c) What is the mean and SD for the standard

score variable? (d) Now look in the Data Editor and find

the two new variables in Data View. What is the value of

crowded and the standard score for crowded for the first

person in the file? Explain the sign (positive or negative)

on her standard score.

B5. Run descriptive statistics on the following variables in the

Polit2SetA dataset: age, age1bir, higrade, hhsize, and

income. Create a table summarizing the results, using

Table 2 as a model—or elaborate on it by adding other de-

scriptive statistics. Then write a paragraph summarizing

the information in the table.

B6. Select a variable from the Polit2SetB dataset that is an

interval-level or ratio-level variable. Do some basic descrip-

tive statistics (means, SDs, etc.) for the selected variable,

and run the Explore procedure to examine outliers. Write

a paragraph summarizing what you learned about the

variable.

†
†
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Answers to Exercises

A1. Mean � 30.37; median � 29.0; mode � 27. The mean is “off center,” pulled slightly to the right, indicating that the distribu-

tion is positively skewed.

A2. a. 7 b. 7 c. 4 d. 5

A3. Distribution “c” has an extreme value (20) that would result in a distorted view of a “typical” value if the mean were used.

A4. Mean � 140.0; range � 60; SD � 20.0 ; variance � 400.0

A5.

Central Tendency, Variability, and Relative Standing

Original z Score Transformed Standard Score

130 �0.5 450

120 �1.0 400

110 �1.5 350

150 �0.5 550

160 �1.0 600

140 0.0 500

120 �1.0 400

160 �1.0 600

170 �1.5 650

140 0.0 500
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Central Tendency, Variability, and Relative Standing

GLOSSARY
Boxplot Also called a box-and-whisker plot, a convenient way of graphically portraying key aspects of a distribution of values; the

lower quartile (Q1) and upper quartile (Q3) are the edges of the “box;” and the “whiskers” indicate the values that are not outliers,

defined in relation to the interquartile range (IQR).

Central tendency An index that comes from the center of a distribution of scores, describing what is a “typical” value; the three

most common indices of central tendency are the mode, the median, and the mean.

Line graph A graph used for plotting values over time, in which values are connected by a line.

Mean A descriptive statistic of central tendency, computed by summing all scores and dividing by the number of participants; for

samples, symbolized as M or .

Median A descriptive statistic of central tendency, representing the exact middle score or value in a distribution of scores; the

value above and below which 50% of the scores lie; symbolized as Mdn.

Mode A descriptive statistic that indicates the score or value that occurs most frequently in a distribution of scores.

Percentile The value of a variable below which a certain percentage of observations fall (e.g., the 5th percentile is the score value

below which 5% of the observations are found).

Range A measure of variability, consisting of the difference between the highest and lowest values in a distribution.

Standard deviation A descriptive statistic for measuring the degree of variability in a set of scores; an index of the average

amount of deviation from the mean.

Standard scores Scores expressed in terms of standard deviations from the mean; raw scores typically are transformed to scores

with a mean of zero and a standard deviation of one; sometimes called z scores.

Variability The degree to which values on a variable in a set of scores are spread out or dispersed.

Variance A measure of variability or dispersion, equal to the square of the standard deviation.

Deviation score A score computed by subtracting an individual score value from the mean of the distribution of scores.

Interquartile range (IQR) A measure of variability, indicating the difference between Q3 (the third quartile or 75th percentile) and

Q1 (the first quartile or 25th percentile); used in the construction of box plots.

X
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z score A standard score in a normal distribution, expressed in terms of standard deviations from the mean of zero.

Heteroscedasticity A property describing the variability of two variables (X and Y) such that for different values of X the variabil-

ity of the Y scores differs; the opposite of homoscedasticity.

Quartile Any of the three points (Q1, Q2, and Q3) that divide a distribution into four parts, each containing one quarter of the dis-

tribution values; the first quartile (Q1) is at the 25th percentile; the second quartile (Q2) is at the 50th percentile, corresponding to the

median; and the third quartile (Q3) is at the 75th percentile.

Real limits of a number The points indicating half a measurement unit below the number (lower real limit) and half a measure-

ment unit above the number (upper real limit).

Central Tendency, Variability, and Relative Standing
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Most research questions are about relationships between two or more variables. For example, when scientists

study whether smokers are more likely than nonsmokers to develop lung cancer, they are asking if there is a re-

lationship between smoking and lung cancer. When nurse researchers ask whether primiparas are more likely

than multiparas to request epidural analgesia, they are studying the relationship between parity and requests for

pain relief.

The univariate descriptive statistics do not concern relationships: They are used to describe one variable at

a time. This chapter discusses methods of describing relationships in a research sample by means of bivariate
descriptive statistics.

CROSSTABULATION

Suppose we were interested in comparing men and women patients with regard to their rate of re-admission into

a psychiatric hospital within 1 year of discharge. In this example, there are two research variables—gender and

readmission status—and both are dichotomous, nominal-level variables. Two frequency distributions would tell

us, first, how many men and women were in the sample, and second, how many sample members were or were

not readmitted within 1 year of discharge. To describe the relationship between the two variables, we would

Bivariate Description:
Crosstabulation, Risk Indexes, 

and Correlation

Crosstabulation
Risk Indexes

Absolute Risk and Absolute Risk Reduction

Relative Risk and Relative Risk Reduction

Odds and the Odds Ratio
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Descriptive Statistics
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From Chapter 4 of Statistics and Data Analysis for Nursing Research, Second Edition. Denise F. Polit. Copyright © 2010 by

Pearson Education, Inc. All rights reserved.
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TABLE 1 Contingency Table for Gender/Readmission Status Example

Gender

Readmission Status Male Female Total

Readmitted 15 (30.0%) 10 (20.0%) 25 (25.0%)

Not Readmitted 35 (70.0%) 40 (80.0%) 75 (75.0%)

Total 50 50 100

crosstabulate the two variables in a contingency table (or crosstabs table), which

is essentially a two-dimensional frequency distribution. Table 1 presents a hypothet-

ical contingency table for our example.

To construct a contingency table, we array the categories of one variable hori-

zontally across the top (in this example, gender), and the categories of the second

variable vertically along the left (here, readmission status). This creates the cells for

the contingency table, that is, the unique combination of the two variables. The num-

ber of cells is the number of categories of the first variable multiplied by the number

of categories of the second. There are four cells (2 � 2) in the present example.

Next, cases are allocated to the appropriate cell. That is, men who were read-

mitted are tallied in the upper left cell, women who were readmitted are tallied in the

upper right cell, and so on. Once all sample members have been properly allocated,

frequencies and percentages can be computed for each cell. In this example, we see

in Table 1 that men were somewhat more likely than women to be readmitted to a

psychiatric hospital within 1 year of discharge (30% versus 20%, respectively).

Contingency tables are easy to construct and they communicate useful infor-

mation. The commands for instructing the computer to prepare a contingency table

are straightforward as well—although thought needs to be given to which variable to

put in the rows and which in the columns. Note that in Table 1, the percentages were

based on gender: 30.0% of the men (15 � 50) and 20.0% of the women (10 � 50)

were readmitted. We could also have calculated percentages based on readmission

status. For example, we could say that 60.0% of all patients readmitted were men

(15 � 25), or that 53.3% of those not readmitted were women (40 � 75). Computers

can be instructed to compute all possible percentages.

As an example, suppose we were interested in comparing women who were ei-

ther married or not married at childbirth with regard to a subsequent diagnosis of

postpartum depression (PPD). A fictitious contingency table for 100 women

(Figure 1) has been created to demonstrate how to read a printout from a crosstabu-

lation. We created this figure in SPSS through the Analyze ➜ Descriptive Statistics ➜
Crosstabs commands, but we added shading to facilitate our discussion. Let us begin

with the overall percentages. In the bottom (shaded) row we see that 19 women (19.0%)

were not married and 81 (81.0%) were married. In the far-right (shaded) column we see

that 20 women (20.0%) were diagnosed with PPD, and 80 women (80.0%) were not.

These are sometimes referred to as the marginal frequencies. Both the row totals and

the column totals add up to the grand total of 100 cases (100%), shown in the bottom

right corner.

As in the previous example, there are four cells (2 � 2) where the two vari-

ables intersect because both variables in Figure 1 are dichotomous. In the printout,

each cell contains four pieces of information, which we describe for the first (upper left)

cell, shaded in darker blue. According to the output, eight of the 100 women in this

sample were unmarried and experienced postpartum depression. The next number is

Bivariate Description: Crosstabulation, Risk Indexes, and Correlation
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Crosstabs

PPD Diagnosis * Marital Status Crosstabulation

Marital Status

Not Married Married Total

PPD 
Diagnosis

Yes Count 8 12 20
% within PPD Diagnosis 40.0% 60.0% 100.0%
% within Marital Status 42.1% 14.8% 20.0%
% of Total 8.0% 12.0% 20.0%

No Count 11 69 80
% within PPD Diagnosis 13.8% 86.2% 100.0%
% within Marital Status 57.9% 85.2% 80.0%
% of Total 11.0% 69.0% 80.0%

Total Count 19 81 100
% within PPD Diagnosis 19.0% 81.0% 100.0%
% within Marital Status 100.0% 100.0% 100.0%
% of Total 19.0% 81.0% 100.0%

FIGURE 1 SPSS printout of a crosstabulation (shading added).

the percent within PPD diagnosis, which is the row percentage: 40.0% (8 � 20) of

the women who were depressed were not married. The third number in the cell is the

percent within marital status, which is the column percentage: 42.1% (8 � 19) of the

unmarried women had a PPD diagnosis. Finally, the fourth number is the total per-

centage: of the 100 sample members, 8.0% were unmarried and depressed. The out-

put shows how to read these numbers by indicating the order of the information, just

to the left of the first cell: Count; % within PPD Diagnosis; % within Marital Status;

and % of Total.

The most important pieces of information in this particular table are the col-

umn percentages for the cells: They tell us that substantially more of the unmarried

women (42.1%) than those who were married (14.8%) experienced postpartum

depression. When the computer is instructed to display the independent variable in

the columns, as in this example, it is usually the column percentages that are of

greatest interest. For creating a table for a report, the independent variable is typically

used as column headings.

Contingency tables such as these are used with nominal-level variables, but

they are also appropriate if the variables are ordinal-level with a small number of cat-

egories. For example, if the PPD diagnosis was classified as severe PPD, mild PPD,

or no PPD, the variable would be ordinal level. When crossed with marital status, the

resulting six-cell contingency table (3 � 2) would describe the relationship between

marital status and severity of PPD.

RISK INDEXES

Clinical decision making based on research evidence has become an important issue

in the current EBP environment, and several descriptive statistical indexes can aid

such decision making. These risk indexes are important because they facilitate the

interpretation of risks (and risk reduction) within a context. If an intervention

reduces the risk of an adverse outcome ten times over, but the initial risk is

minuscule, the intervention may be impractical if it is costly. Both absolute change

Bivariate Description: Crosstabulation, Risk Indexes, and Correlation
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(the actual amount of difference) and relative change (comparisons between groups

or conditions) are important in clinical decision making.

The indexes described in this section involve two dichotomous nominal-

level variables. Data of this type might be generated in several research situations,

but here we consider three. Some research is designed to identify the factors that

put people at special risk of a negative outcome. The goal of such research might

be to educate people about the risk or to identify at-risk people who might benefit

from a special intervention. One example is prospective research on smoking as a

risk factor (smokers versus nonsmokers) and subsequent lung cancer as an out-

come (lung cancer versus no lung cancer). In retrospective case-control studies,

the goal is similarly to identify risk, but in this design, researchers start with the

adverse outcome (lung cancer versus no lung cancer) and then examine prior

smoking practices in both groups. A third situation involves interventions designed

to reduce risk—such as a nurse-led smoking cessation intervention. In this situa-

tion, receipt of the intervention is one dichotomous variable (received versus did

not receive it) and smoking status after the intervention is the other (smoking

versus not smoking).

TIP: Researchers sometimes dichotomize interval- or ratio-level variables
so they can calculate these risk indexes. This strategy is especially useful
if there are clinically important thresholds or cutoff points for a risk
variable. For example, values for the body mass index (BMI) could be used
to designate whether a person is or is not obese, based on a standard BMI
cutpoint of 30.

Risk indexes such as those we discuss in this section are not always presented

in statistics textbooks—and, in fact, they are infrequently reported in nursing journal

articles. Readers can sometimes use information in articles to calculate these indexes

if full crosstabulation information has been presented. Indeed, there are many 

Web sites that will calculate the indexes for you if you do not have raw data but

rather are working with cell percentages such as those described in the previous sec-

tion. We suspect that, because of the high visibility of EBP, increasing numbers of

researchers will report these indexes in the years ahead, and so we discuss ways to

calculate them from raw data.

TIP: Various Web sites on the Internet provide assistance in calculating
indexes described in this section, including the University of British
Columbia’s Clinical Significance Calculator (http://www.spph.ubc.ca/calc/
clinsig.html), or the Evidence-Based Emergency Medicine Web site (http://
www.ebem.org/nntcalculator.html).

One of the terms often associated with the risk indexes is exposure—i.e., expo-

sure to risk. People with the risk factor are in the exposed group, and those without the

risk are in the not exposed group. For example, in a study of fall risk in relation to cog-

nitive impairment among nursing home residents, those with a cognitive impairment

would be in the exposed group, and those without cognitive impairment would be in

the not exposed group. In studies of interventions designed to reduce risk or negative

outcomes, we can conceptualize the control group as being “exposed” to ongoing

risk, under the hypothesis that the intervention is beneficial and reduces risk. In this

Bivariate Description: Crosstabulation, Risk Indexes, and Correlation
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TABLE 2 Indexes of Risk in a 2 � 2 Table

Risk Factor

Outcome

Total
Yes

(Undesirable Outcome)
No 

(Desirable Outcome)

Yes,
exposed 
to risk (Or, not
given an
intervention—
Controls)

a b a � b

No,
not exposed 
to risk (Or, given
an intervention—
Experimentals)

c d c � d

TOTAL a � c b � d a � b � c � d

Absolute Risk, risk-exposed or control group (ARE) � a � (a � b)

Absolute Risk, nonexposed or experimental group (ARNE) � c � (c � d)

Absolute Risk Reduction (ARR) � ARNE � ARE

Relative Risk (RR) � ARE � ARNE

Relative Risk Reduction (RRR) � ARR � ARNE

Odds, risk-exposed or control group (OddsE) � a � b

Odds, nonexposed or experimental group (OddsNE) � c � d

Odds Ratio (OR) �

Number Needed to Treat � 1 � ARR

OddsE

OddsNE

situation, being in the treatment group corresponds to nonexposure (i.e., protection

from risk factors that would typically be present without the intervention).

In the situation we have described, we could construct a 2 � 2 contingency

table with four cells, as depicted in Table 2. This table labels the four cells in the con-

tingency table so that computations for the risk indexes can be explained. Cell a is

the number of people with an undesirable outcome (e.g., death) in a risk-exposed (or

control) group; cell b is the number with a desirable outcome (e.g., survival) in the

risk-exposed group; and cells c and d are the two outcome possibilities for a

non–risk exposed (or intervention) group. We can now explain the meaning and

calculation of several indexes that are of particular interest to clinicians.

Note that the computations shown in Table 2 require the independent variable

(risk exposure) to be in the rows, and the outcome to be in the columns—This is
exactly the opposite of how we recommended arranging variables in our previous
discussion on crosstabs. This reverse ordering of variables is recommended within

SPSS (Norus̆is, 2008) for the computation of several key risk indexes. Moreover, the

variables should be coded such that the smaller code for the independent variable is

associated with greater hypothesized risk, and that the smaller code for the dependent

variable is associated with less favorable outcomes. In other words, cell a in Table 2
should be where you would expect the least favorable outcomes if you are using the

Bivariate Description: Crosstabulation, Risk Indexes, and Correlation
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Bivariate Description: Crosstabulation, Risk Indexes, and Correlation

formulas shown in Table 2 (or if you are using SPSS to calculate risk statistics).

So, for example, in a smoking cessation intervention study, the control group not

receiving the intervention should be coded 0 and the experimental group members

receiving the intervention should be coded 1, and not vice versa (or codes 1 and 2,

respectively). And if smoking status 1 month later were the outcome variable, smok-

ers should be designated by a code 0, and nonsmokers with a code of 1—or, again,

codes 1 and 2, respectively. (We discuss this a bit further later in this chapter.)

TIP: Within major software packages, you would be able to recode your
values if you did not originally follow the coding suggestions just outlined.
For example, if experimentals were coded 1 and controls were coded 2, you
would just need to instruct the computer to recode all 2s as 0s. In SPSS,
you could do this through the Transform ➜ Recode into Same Variable
command.

Absolute Risk and Absolute Risk Reduction

Absolute risk can be computed for both those exposed to a risk factor, and for those

not exposed. Absolute risk is simply the proportion of people who experienced an

undesirable outcome in each group. We illustrate this and other indexes with our ear-

lier data on marital status and a PPD diagnosis. In this situation, we are asking about

how much risk an unmarried woman has of PPD, relative to her risk if married. Thus,

in this example we have hypothesized that being unmarried is a risk factor for post-

partum depression. Table 3 shows the crosstabulation of these two variables, with the

same data as earlier—except here the PPD outcome is shown in the columns, and the

risk factor (marital status) is shown in the rows. This table shows only counts and

row percentages.

In this fictitious example, the absolute risk of a PPD diagnosis is 42.1% among

unmarried (exposed) women (ARE � .421), and 14.8% in the married (not exposed)

group (ARNE � .148). Thus, absolute risk corresponds to the row percentage for

each group: a � (a � b) and c � (c � d). Women in both groups were at risk of PPD,

but not being married was associated with a heightened risk of a poor psychological

outcome in this sample.

The absolute risk reduction (ARR), which is sometimes called the risk dif-
ference, is a comparison of the two risks. It is computed by subtracting the absolute

risk for the nonexposed group from the absolute risk for the exposed group. This

index indicates the estimated proportion of extra people who would be harmed from

risk exposure—or, in an intervention study, the proportion spared from the undesir-

able outcome through receipt of the treatment. In our example, the value of ARR is

.273 (.421 � .148 � .273). In other words, 27.3% of the mothers had a PPD diagno-

sis associated with not being married, over and above the estimated 14.8% who

would have been depressed even if married.

Relative Risk and Relative Risk Reduction

The index called relative risk (RR), or the risk ratio, is the ratio of absolute risks in

the two groups. RR represents the proportion of the original risk of an adverse out-

come (in our example, a PPD diagnosis) that is associated with the risk exposure.

Said another way, relative risk is the probability of a bad outcome for someone with

risk exposure, relative to the probability of a bad outcome without such exposure.

54



Bivariate Description: Crosstabulation, Risk Indexes, and Correlation

TABLE 3 Data for Risk Index Computations: Marital Staus and PPD Outcome

PPD Diagnosis

Yes No Total

Marital
Status

Not
married

Count % within PPD
diagnosis

8

42.1%

(a)

11

57.9%

(b)

19

100.0%

(a � b)

Married Count % within PPD
diagnosis

12

14.8%

(c)

69

85.2%

(d)

81

100.0%

(c � d)

TOTAL Count % within PPD
Diagnosis

20

20.0%

80

80.0%

100

100.0%

Absolute Risk, risk-exposed group (ARE) � 8 � 19 � .421

Absolute Risk, nonexposed group (ARNE) � 12 � 81 � .148

Absolute Risk Reduction (ARR) � .421 � .148 � .273

Relative Risk (RR) � .421 � .148 � 2.842

Relative Risk Reduction (RRR) � .273 � .148 � 1.845

Odds, risk-exposed group (OddsE) � 8 � 11 � .727

Odds, nonexposed group (OddsNE) � 12 � 69 � .174

Odds Ratio (OR) � � 4.182

Number Needed to Treat � 1 � .273 � 3.663

.727

.174

When the value of RR is close to 1, it means that risk exposure and outcomes are not

related—the two groups are expected to have similar outcomes.

To compute an RR, the absolute risk for risk-exposed people (ARE) is divided

by the absolute risk for nonexposed people (ARNE). In our fictitious example, the RR

is .421 � .148 � 2.842. This means that the risk of postpartum depression was near-

ly three times as high for unmarried as for married women. RR, which can be com-

puted within SPSS as part of the Crosstabs procedure, is one of the most frequently

used risk indexes.

Another index that is sometimes used when evaluating the effectiveness of an

intervention is the relative risk reduction (RRR). RRR is the estimated proportion

of risk associated with risk exposure that is reduced when there is no exposure—or,

in the context of an intervention, it is the estimated proportion of baseline risk that is

reduced as a result of the treatment. This index is computed by dividing the ARR by

the absolute risk for the risk-exposed group. In our example, RRR � .273 � .148 �
1.845. This means that being married decreased the relative risk of a PPD diagnosis

by 185%, compared to being unmarried.

Odds and the Odds Ratio

The odds ratio is among the most widely reported index among those described

in this section, but it is less intuitively meaningful than the RR as an index of

risk. The term “odds” is most frequently used in the context of gambling, like a

horse’s odds of winning a major stakes race, or the odds of rolling “snake eyes”
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Risk Estimate

Value

95% Confidence 
Interval

Lower Upper

Odds Ratio for Marital Status 
(Not Married/ Married)

4.182 1.395 12.535

For cohort PPD Diagnosis � Yes 2.842 1.353 5.969

For cohort PPD Diagnosis � No .680 .458 1.008

N of Valid Cases 100

FIGURE 2 SPSS printout of risk indexes (shading added).

(two ones) with a pair of dice. The odds, in the context of healthcare outcomes,

is the proportion of people in each group with the adverse outcome relative

to those without it. In our example, the odds of PPD for the unmarried group

is 8 (the number who had a PPD diagnosis) divided by 11 (the number who

did not), or .727. The odds for the married group is 12 divided by 69, or .174.

The odds ratio (OR) is the ratio of these two odds, or 4.182 in our example

(i.e., .727 � .174). The estimated odds of being depressed postpartum are about

four times higher among unmarried than among married women in this sample.

Like RR, when the value of an OR is close to 1, the risk factor and the outcome

are not related.

The odds ratio can be computed in SPSS within the Crosstabs procedure.

The printout for our example is shown in Figure 2. (For the moment, ignore the

confidence interval information in the right columns). This output shows that the

OR is 4.182—the same value we computed manually. The RR for having a PPD

diagnosis is shown next, with the label “For cohort PPD Diagnosis � Yes.” This

index indicates the relative risk of having a PPD diagnosis, given the status of

being unmarried. The RR of 2.842 is the same value we obtained with manual cal-

culations. The next entry in the output (“For cohort PPD Diagnosis � No”) can be

ignored in the present example—it represents the relative risk of not having a PPD

diagnosis (.680), given a nonmarried status.

Number Needed to Treat

One other index of interest in the current evidence-based practice environment is

the number needed to treat (NNT). This index is especially useful in the context

of an intervention—it represents an estimate of how many people would need to

receive a treatment to prevent one undesirable outcome. The NNT is computed by

dividing 1 by the value of the absolute risk reduction. In our example, ARR � .273,

and so NNT is 3.663—although it is not a particularly meaningful index in this

context. It suggests that between three and four unmarried women would need to

marry to avoid one PPD diagnosis. Although not useful in this example, the NNT

is obviously important when the independent variable is a treatment, and there is

an interest in understanding how many treated people would yield an improved

outcome. The NNT is valuable for decision makers because it can be integrated

with monetary information to assess whether an intervention is likely to be cost

effective.

Bivariate Description: Crosstabulation, Risk Indexes, and Correlation
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Example of ARR, RR, and NNT:

Nakagami and colleagues (2007) evaluated the effectiveness of a new dressing

containing ceramide 2 for preventing persistent erythema and pressure ulcers in

bedridden older patients. The study involved 37 patients in Japan, who were ad-

ministered the dressing, at random, to either the right or left greater trochanter for

3 weeks. No dressing was applied to the opposite side, which served as the control

condition. The results indicated that the incidence of persistent erythema was

lower on the intervention side than on the control side. The absolute risk reduction

was about 24%. The RR index was .18 and NNT was 4.11. That is, for four people

receiving the special dressing, the incidence of persistent erythema would be

reduced by one.

Risk Index Issues

Some additional guidance and discussion may be helpful in interpreting the various

risk indexes and selecting which one to use. One issue concerns Table 2, which 

is set up with the expectation that the worst outcome would be in cell a, as recom-

mended within SPSS (Norus̆is, 2008). In fact, this is different than presentations in

other textbooks, including the one by Polit & Beck (2008, Table 21.8). In that book

and other books on EBP (e.g., DiCenso, Guyatt, & Ciliska, 2005), the table is set up

to have the worst expected outcome in cell c, which results when an intervention

group is in the top row and a control group is in the bottom row. In such presenta-

tions, “exposure” is conceptualized as exposure to a beneficial treatment, not to a

risk factor. As we will see, both arrangements are perfectly fine—as long as you pay

attention to what the resulting risk index values mean.

In our example, we coded not married as “1” and married as “2” so that the un-

married women would be in the top row. If we reversed the coding of these two

groups, then in a computer analysis the values for married women would be in the

top row rather than in the bottom one. If married women were in the top row, the row

percentages would not, of course, change—and hence, the values of absolute risk of

PPD would remain the same: .421 for unmarried women and .148 for married

women. But now, to compute the RR, instead of dividing .421 by .148, we would do

the reverse (.148 � .421), and this would yield an RR of .352 instead of 2.842. The

result is actually identical: Instead of saying unmarried women were about three

times as likely to have PPD as married women, the RR value of .352 means that mar-

ried women are about one third as likely to have PPD as unmarried women. When

interpreting indexes like RR or OR, it is important to look at absolute values, like the

row percentages (AR).

There has been a lot of discussion about whether to report RR or OR values in

reports. Certainly, relative risk is much easier to grasp than the odds ratio. As

DiCenso and colleagues (2005) noted, “As clinicians, we would like to be able to

substitute the relative risk, which we intuitively understand, for the odds ratio, which

we do not understand” (p. 412). This statement reflects the fact that odds is a gam-

bling concept not widely grasped in the healthcare community, let alone the concept

of a ratio of odds. Interestingly, however, the value of the OR and RR are frequently

quite similar, and this is especially true when the consequences of risk exposure is

low, or the beneficial effect of an intervention is modest. In other words, when the

absolute risk reduction is smaller, the two indexes are closer in value.

To illustrate, suppose that in our earlier example only four rather than eight of

the 19 unmarried women was diagnosed with PPD—i.e., 21.1% rather than 42.1%
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had the diagnosis. In this situation, ARR would decrease from .27 to .06. The value

of RR (1.42) is now quite close to the value of the OR (1.53).

TIP: The odds ratio, and not the RR, should be used when the study
design is a retrospective case-control design. For RCTs and prospective
studies, either the OR or the RR can be used, although the RR may be
preferred for interpretive reasons.

One final point is that relative risk should not be interpreted without taking

absolute risk into consideration, because similar RR values can be associated

with quite different ARR values. For example, suppose that both unmarried and

married women had half the risk of a PPD diagnosis as was observed in Table 3.

In other words, only four out of 19 unmarried women (21.1%) and six out of 81

married women (7.4%) had a PPD diagnosis. ARR, in this case, is .137—half of

what it was initially, and NNT also changes, doubling to 7.30. Yet, RR remains

unchanged (2.84). Thus, in making clinical decisions—for example, about the

cost effectiveness of implementing an intervention—both relative and absolute

risk need to be considered.

CORRELATION

A correlation refers to a bond or connection between variables—variation in one

variable is systematically related to variation in the other. Correlation analysis is a

useful way to describe the direction and magnitude of a relationship between two

variables. For example, correlation analysis can be used to address the question, To

what extent is respiratory function related to anxiety levels in patients with chronic

obstructive pulmonary disease? Or, What is the magnitude of the relationship be-

tween measurements of resting energy expenditure using indirect calorimetry and

the Fick method?

Variables are correlated with one another when there is a relationship between

them. Correlations between two variables can be plotted graphically, but are more

often reported through an index that summarizes the extent and direction of a rela-

tionship. We describe graphic procedures first because they help us to visualize why

correlation coefficients are useful in describing linear (straight line) relationships
that have a constant rate of change between the variables.

Scatterplots

The relationship between two variables that have been measured on an interval or

ratio scale can be displayed graphically on a scatterplot (or scatter diagram). Such

a graph plots the values of one variable (X) on the X axis, and simultaneously plots

the values of a second variable (Y ) on the Y axis. As an example, suppose that for

every hour that students volunteered to work at a school-based clinic, a sponsor do-

nated $1 toward the school’s athletic fund. Figure 3 presents data for hours worked (X)

and dollar amounts donated (Y ) for 10 students. The first student volunteered 1 hour,

and so the amount of the donation was $1. The tenth student volunteered 10 hours,

resulting in a $10 donation. Figure 3 also shows a scatterplot of these data. Each dot

on the plot is a data point for the two variables (e.g., the dot at the intersection of 1

hour on the X axis and $1 on the Y axis is the data point for student number 1). This

graph shows that there is a straight line relationship between X and Y. Algebraically,
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FIGURE 3 Scatterplot for volunteer/donation example.
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FIGURE 4 Scatterplot of students’ test scores.

we can say that X � Y: The value of X always equals the value of Y. If a student

worked 20 hours, the donation would be $20. The relationship between X and Y is

called a perfect relationship, because we need only know the value of X to know or

predict the value of Y, and vice versa.

Researchers rarely study variables that are perfectly related, and so scatterplots

of actual research data are seldom so orderly as the one in Figure 3. Figure 4 presents

a scatterplot with some fictitious data for two variables for which the relationship is

strong, but not perfect. Let us say that X is nursing students’ test scores on a 

10-question midterm statistics test and Y is their scores on a 10-question final exam.

(The letters on the graph correspond to students a–j, and are shown here to help iden-

tify each data point.) We cannot perfectly predict values of Y based on values of X,

but nevertheless students who performed well on the midterm also tended to do well

on the final.
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FIGURE 5 Scatterplots showing various correlations.

Scatterplots show both the magnitude and direction of relationships. The scat-

terplot in Figure 4 illustrates a strong positive relationship. The relationship is

strong because the data points fall closely together along a straight diagonal line;

The relationship is positive because high values on X are associated with high values

on Y. Scatterplots of positive relationships show points that extend from the lower

left corner of the graph to the upper right one. Figure 5 (A) shows another example

of a positive relationship, but one that is weak: The points are scattered in a loose

fashion, though the general trend is in a distinctly positive direction. Figure 5 (B)

shows a scatterplot of a positive correlation that is moderately strong.

A negative relationship (or inverse relationship) between variables occurs

when high values on one variable are associated with low values on another. For ex-

ample, researchers have generally found that depression and self-efficacy are nega-

tively related: People who have high levels of perceived self-efficacy tend to have

low levels of depression, and vice versa. Scatterplots of negative relationships have

points that slope from the upper left corner to the lower right one. Figure 5 (D) shows

a scatterplot of a perfect negative relationship between two variables and Figure 5

(E) illustrates a negative relationship that is strong, but not perfect.

When variables are totally uncorrelated, the points on the graph are scattered

all over in a random fashion, such as in the scatterplot in Figure 5 (C). In this

situation, a person with a high score on X is equally likely to have a low or a high
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score on Y. For example, if we were to construct a scatterplot showing the relation-

ship between nurses’ height and their degree of burnout, we might expect a graph such

as this one: There is no reason to expect tall nurses to be more (or less) burned out

than short nurses.

Another type of relationship is shown in Figure 5 (F). This scatterplot

illustrates a curvilinear relationship. In this situation, a straight line does not

adequately characterize the relationship between the variables. Scores on Y
increase as the scores on X increase, but only to a certain point, and after that point

the scores on Y decline. As an example, there may be a curvilinear relationship

between the number of hours slept and self-reported energy levels: Perceived ener-

gy would likely increase with increasing amounts of sleep, but at some point a

large number of hours of sleep might reflect a physiological condition associated

with low energy.

Correlation Coefficients

Although correlations between two variables can readily be graphed, researchers are

more likely to describe correlations by a statistic called a correlation coefficient.
Correlation coefficients, like scatterplots, indicate both the magnitude and direction

of a linear relationship between two variables. Because they are expressed numeri-

cally, correlation coefficients are more precise about magnitude than scatterplots, to

which we usually attach broad verbal labels such as “weak” or “moderately strong.”

Correlation coefficients are indexes whose values range from �1.00 through

.00 to �1.00. Negative values (from �1.00 to �.01) indicate negative relationships,

while positive values (from �.01 to �1.00) indicate positive relationships. A corre-

lation coefficient of .00 indicates no relationship between the variables.

The absolute value (the numerical value without any sign) of the correlation

coefficient indicates relationship strength. The smaller the absolute value, the weak-

er the relationship. For example, �.90 indicates a very strong relationship, while

�.45 indicates a moderate relationship. When two variables are perfectly and posi-

tively correlated (as in Figure 3), the correlation coefficient is �1.00. Perfect nega-

tive correlations are expressed as �1.00.

PEARSON’S r The most widely used correlation index is the Pearson product-
moment correlation coefficient (also called Pearson’s r), a statistic that is appro-

priate when two variables are measured on an interval or ratio scale, or on a level that

approximates interval characteristics. 

Correlation coefficients are usually calculated by computer rather than manu-

ally. However, manual computation, though laborious, is not difficult. There are sev-

eral alternative formulas for computing Pearson’s r. We offer the following equation:

where rxy � the correlation coefficient for variables X and Y
� � the sum of

X � an individual value for variable X

X
–

� the mean for variable X

Y � an individual value for variable Y

Y
–

� the mean for variable Y

rxy �
� 1X � X 2 1Y � Y 2

2� 3 1X � X 2 2 4 3 1Y � Y 2 2 4
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TABLE 4 Calculation of Pearson’s r

1 2 3 4 5 6 7
Student X (X�X

_
) (X�X

_
)2 Y (Y�Y

_
) (Y�Y

_
)2 (X�X

_
) (Y�Y

_
)

a 2 �3 9 3 �3 9 9

b 6 1 1 7 1 1 1
c 5 0 0 6 0 0 0
d 9 4 16 8 2 4 8
e 7 2 4 9 3 9 6
f 9 4 16 10 4 16 16
g 3 �2 4 4 �2 4 4

h 4 �1 1 6 0 0 0

i 1 �4 16 2 �4 16 16

j 4 �1 1 5 �1 1 1

�X � 50

X � 5.0

�� 68 �Y � 60

Y � 6.0

� � 60 � � 61

rxy �
61

268 � 60
�

61

24080
�

61
63.8745

� .955

� 1Y � Y 22  � 60

� 1X � X 22  � 68

� 1X � X 2 1Y � Y 2 � 61rxy �
� 1X � X 2 1Y � Y 2

2 3� 1X � X 22 4 3� 1Y � Y 22 4

Although this formula looks complex, it basically involves manipulating deviation

scores for the two variables.1 An example is completely worked out in Table 4, using

the data for students’ scores on the statistics midterm and final exam (see Figure 4).

The first step in computing r with this formula is to compute the means for X
and Y, which are shown as 5.0 and 6.0, respectively (columns 1 and 4 in Table 4).

Deviation scores are then obtained for each student (columns 2 and 5), and then each

deviation score is squared (columns 3 and 6). The cross products of the two devia-

tion scores are calculated in column 7. That is, the deviation score for variable X is

multiplied by the deviation score for variable Y for each student. The individual

values in columns 3, 6, and 7 are then summed, and these sums are the elements

required in the correlation formula. As shown at the bottom of Table 4, the value of r in

this example is .955, which is a very strong, positive correlation.

When a computer is used to calculate the Pearson r statistic, the command is

usually simple. For example, in SPSS, the commands for correlating two variables

would be Analyze ➜ Correlate ➜ Bivariate, followed by instructions on which vari-

ables should be correlated.

INTERPRETATION OF CORRELATION COEFFICIENTS Correlation coefficients

directly communicate magnitude, but there are no straightforward guidelines for

interpreting the strength of a correlation coefficient. For example, if nurses measured

patients’ body temperatures with two thermometers, they might find a correlation co-

efficient between the two values in the vicinity of .99. In this context, if the correlation
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FIGURE 6 SPSS printout of two scatterplots.

between the two instruments was found to be .80, the correlation would be considered

unacceptably low. On the other hand, the correlation between self-efficacy and

depression is probably in the vicinity of �.40, and in this situation, a correlation of

�.80 would be considered extremely high. Correlations between variables of a psy-

chosocial nature rarely exceed .50.

Scatterplots are sometimes useful in interpreting correlation coefficients

when the magnitude is modest. A low correlation coefficient could reflect a weak

relationship between two variables, or a relationship that is not linear. For example,

two computer-generated scatterplots are presented in Figure 6. These scatterplots

(created in SPSS through the Graphs ➜ Legacy Dialogs ➜ Scatterplot commands)

use standard scores as the data values rather than actual raw scores, so the means

of all variables are 0. Graph A and B, which plots VARX against VARY, suggests

a weak relationship. There is only the barest suggestion that the variables are

positively correlated and, in fact, the correlation coefficient is only �.21. The

correlation coefficient for the two variables in graph B of Figure 6 (VARY and

VARZ) is the same (r � �.21), but the nature of the relationship is different.

VARY and VARZ have a fairly strong positive relationship at all points below the

means of the two variables. Above the mean of 0, however, the two variables seem

related in a loosely negative direction. Because the relationship is not linear, r does

not adequately summarize the pattern.

An interesting feature of a correlation coefficient is that its square (r2) is a

direct indication of the proportion of the variability in one variable that can be

accounted for or explained by variability in a second variable. For example, if the

correlation coefficient describing the relationship between SAT scores (X) and

nursing students’ grades (Y) is .50, we can say that 25% (.502) of the variability

in students’ grades is explained by variability in SAT scores. This relationship is

depicted graphically in Figure 7. In this figure, the two circles represent the total

amount of variation in the two variables, and the hatched area indicates how

much of the variation in grades is “explained” by variation in SAT scores

(i.e., 25%). The remaining 75% of the variability in grades is influenced by other

factors (e.g., motivation, prior experience, idiosyncracies of faculty grading, and

so on). If the correlation between the two variables were perfect (if the student
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with the highest SAT scores obtained the highest grades, the second highest

scorer got the second highest grades, and so on), the two circles would overlap

completely.

It must be emphasized that when a researcher finds that two variables are

correlated, this does not imply that one variable caused the other. For example, if

we found a negative correlation between physical functioning and depression, we

could not conclude that having low physical functioning causes people to become

depressed. Nor can we conclude that being depressed reduces people’s physical

functioning. Either of these might be true, but it might also be that both are

caused by some other factor (e.g., older age or an illness). Researchers must

always be cautious when drawing inferences of a causal relationship from correla-

tions. Even a very strong correlation between two variables provides no evidence

that one variable caused the other.

Example of correlations:

Fredland, Campbell, and Han (2008) studied relationships between violence expo-

sure and health outcomes in urban adolescents. They used sophisticated statistical

methods for their main theory-testing analyses, but also presented a table with inter-

correlations among 14 variables. The correlations ranged in direction and magni-

tude. For example, scores on a measure of personal violence correlated moderately

with a measure of community violence (r � .37) but not with scores on a coping

scale (r � �.01). The strongest correlation was between scores on two subscales of

the Pediatric Symptom Checklist, the “Internalizing Symptoms” and “Attention-

Getting Symptoms” subscales (r � .58).

RESEARCH APPLICATIONS OF BIVARIATE 
DESCRIPTIVE STATISTICS

Bivariate descriptive statistics are a useful means of summarizing the relationship

between two variables. This section examines some of the major applications of

bivariate descriptive statistics and discusses methods of effectively displaying such

information.

25%

r = .50

SAT Scores (X) Nursing Students’ Grades (Y )

75%

FIGURE 7 Illustration of percentage of explained variability in two correlated 
variables.

64



Bivariate Description: Crosstabulation, Risk Indexes, and Correlation

The Uses of Bivariate Descriptive Statistics

Most studies concern the relationship between two or more variables. Researchers

rely primarily on inferential statistics, but bivariate descriptive statistics are also used

widely. A few of the major uses for these statistics are discussed here.

1. Understanding the data As with other descriptive statistics, bivariate descrip-

tive statistics are often used in preliminary analyses to help researchers better

understand their data when more complex analyses are planned. For example,

many sophisticated multivariate techniques build on correlational techniques,

and it is useful to first look at correlations descriptively. In research reports,

correlations among major study variables are sometimes displayed prior to

presenting the results of inferential statistics. For example, Tullai-McGuinness

(2008) studied factors that predict nurses’ job satisfaction in home healthcare

environments, using multivariate statistical procedures in her main analysis.

However, she first presented a table that showed correlation coefficients between

job satisfaction and nurses’ characteristics, such as their age, education, and

years of experience.

2. Cleaning the data When checking to make sure that data are accurate,

researchers often undertake consistency checks, which primarily involve

crosstabulations to make sure that patterns of data are reasonable. For exam-

ple, a researcher might crosstabulate the variable sex with the variable for

number of times pregnant. If the data reflected that a male had a pregnancy,

then the researcher would need to determine which variable (sex or pregnan-

cies) had incorrect values for the case with the error.

3. Describing the research sample Researchers often describe background

traits for subgroups within the sample, not just for the sample as a whole. In

other words, researchers crosstabulate background characteristics with a vari-

able that is relevant to the study, such as sex or diagnosis. For example, Gies,

Buchman, Robinson, and Smolen (2008) evaluated the effects of a nurse-

directed smoking cessation program for hospitalized adults. Before discussing

their results on program effectiveness, they presented a descriptive table that

crosstabulated participants’ treatment group status (experimental versus

control) with demographic characteristics (e.g., sex, marital status, type of

health problem).

4. Developing and refining an instrument Correlation coefficients are often

used to help researchers make decisions when they are developing a new

instrument to measure a construct. For example, suppose we were interested

in measuring loneliness among nursing home residents, and found existing

scales unsuitable. We might begin by developing an item pool of 30 to

40 items (e.g., agree/disagree type items) and then administering them to a

sample of 100 nursing home residents on a trial basis. A score on the scale

would be computed for each resident by adding together responses to the

items. To evaluate whether each item was contributing properly to the scale,

we would compute correlation coefficients between responses to individual

items and the total scale score, and between responses to all pairs of items.

Items are often discarded (or revised) if the item-total correlation coefficient

is less than .50 or if an interitem correlation is less than .30. As a research ex-

ample, Bu and Wu (2008) developed a scale to measure nurses’ attitudes to-

ward patient advocacy. They pilot tested their preliminary 74-item scale with
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a sample of 60 nurses, and made revisions (including the deletion of two

items) based on low interitem and item-total correlations.

5. Answering research questions Researchers sometimes use methods de-

scribed in this chapter to answer their research questions—but, more frequent-

ly, they rely on inferential statistics when the focus is on relationships between

variables. Risk indexes are sometimes calculated in a descriptive fashion by

clinicians who want to answer questions about the relative benefit of an inter-

vention or the relative risk of different exposures. In most cases, however, they

compute descriptive indexes of risk, like the OR or NNT, based on data gener-

ated in a study that relied on inferential statistics.

The Presentation of Bivariate Descriptive
Statistics in Research Reports

Bivariate descriptive statistics are sometimes reported directly in the text of a

research report. For example, a researcher might report that the correlation

between subjects’ preoperative heart rate and scores on an anxiety scale was .43.

Whenever bivariate statistics are used to describe multiple variables simultane-

ously, however, the information is usually presented in tables with highlights

mentioned in the text.

When a contingency table results in only four cells, as in Table 1, the informa-

tion can be efficiently summarized in a sentence (e.g., “Twenty percent of the women,

compared with 30% of the men, were readmitted to the psychiatric hospital within 1

year of discharge”). When there are six or more cells, tables may be less confusing and

more informative than a textual presentation. Tables are especially effective for sum-

marizing crosstabulations for multiple variables simultaneously. For example, in the

previously mentioned smoking-cessation study by Gies and colleagues (2008), their

first table presented crosstabulations for treatment group status crossed by six different

demographic variables. The amount of information shown in this table would have

been hard to digest if it had been reported narratively in the text of the report.

Occasionally, researchers present three-dimensional contingency tables.

A three-dimensional crosstabulation involves crossing two nominal (or ordinal) vari-

ables, separately for different categories of a third variable. For example, Welch,

Miller, and James (2008) examined factors influencing breast and cervical cancer

screening in a sample of over 27,000 American women. One of their tables crossed

screening behaviors (six categories, based on length of time since last screening)

with age groups (three age groups) for three types of screening (clinical breast exam,

mammography, and PAP test)—a 6 � 3 � 3 table. We condensed their table by

collapsing screening behaviors into three categories, and omitting clinical breast

exam data (Table 5). Note that the percentage information shown is column percent-

ages (using age group frequencies as the basis of the calculations), and not row

percentages (which would use screening behavior frequencies as the basis).

Correlation coefficients are often displayed in a two-dimensional correlation
matrix, with a list of variables along both the top row and in the left-hand column

of the table. The correlation coefficients between each pair of variables are then

placed at the intersections of the relevant column and row. Usually, the same vari-

ables are listed in both the columns and rows of the correlation matrix, which

efficiently shows the correlations between all combinations of variables.

Table 6 presents a fictitious example of a correlation matrix, showing

intercorrelations among three dimensions of pain, and a total pain score, for a sample of

hospitalized adolescents. This table lists the four variables in the first column, and the

top row designates the numbers corresponding to the variables. The first (upper-left)
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TABLE 5 Example of a 3 � 3 � 2 Contingency Table

Type of Cancer
Screening

18–39 Year Olds
n (%)

40–64 Year Olds
n (%)

Older than 64 Years
n (%)

Mammography
Never screened 6,942 (75.1) 1,775 (10.0) 781 (8.2)
Screened within
prior 24 months

1,533 (16.6) 13,335 (74.7) 7,147 (75.3)

Screened 25�
months ago

772 (8.3) 2,727 (15.3) 1,567 (16.5)

PAP Test

Never screened 508 (5.5) 306 (1.7) 672 (7.3)
Screened within 
prior 24 months

7,769 (84.3) 13,638 (76.9) 4,839 (52.3)

Screened 25�
months ago

936 (10.2) 3,802 (21.4) 3,740 (40.4)

Total Number 
of Women

9,247 17,836 9,495

Adapted and abridged from Table 1 in Welch et al.’s (2008) report. The table was titled “Breast and

Cervical Cancer Screening among Behavioral Risk Factor Surveillance System Survey, 2005.”

TABLE 6 Example of a Correlation Matrix for Measures of Dimensions
of Pain in a Sample of Hosptialized Adolescents (N � 200)

Dimension of Pain 1 2 3 4

1 Sensory Pain 1.00
2 Affective Pain .73 1.00
3 Evaluative Pain .33 .35 1.00
4 Total Pain .92 .83 .50 1.00

entry of 1.00 simply shows that sensory pain scores are perfectly correlated with them-

selves. In our example, all the diagonal values are 1.00, indicating perfect self-

correlations. The next entry in the first column indicates the correlation between the

sensory (variable 1) and affective (variable 2) dimensions of pain (r12 � .73), and so on.

This table shows that all pain measures were positively correlated. Total pain was sub-

stantially correlated with sensory pain (r14 � .92); however, the correlation between the

sensory and evaluative dimensions of pain was rather modest (r13 � .33).

In terms of graphic presentations, we have seen that correlations between two

variables can be displayed graphically in a scatterplot. However, scatterplots are

rarely included in research reports because correlation coefficients summarize linear

relationships more succinctly and also more precisely.

Descriptive crosstabulations of two variables can be presented in graphic form,

and are particularly useful for conference presentations. Figure 8A shows our earlier

crosstabulated data on marital status and PPD diagnosis in a clustered bar chart. In
the right panel (Figure 8B) the same information is presented in a stacked bar
chart. Both figures were created by SPSS within the Graphs ➜ Legacy Dialogs ➜
Bar Chart procedure.
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Tips on Preparing Tables 
with Bivariate Descriptive Statistics

As with any statistical tables, it is important to construct tables of bivariate des-

criptive statistics so that they are clear, informative, and concise. We offer some

suggestions to guide table construction for displaying bivariate statistics.

• When bivariate descriptive statistics are being displayed, it is usually useful to

set up the table to facilitate cross-row comparisons. For example, when two or

more groups are being compared (e.g., experimental versus control, men ver-

sus women) the groups are usually displayed along the top row. Group status is

often the study’s independent variable. This format is especially convenient—

in terms of fitting the rectangular format of journal pages—when the number

of groups is fewer than the number of categories of the second variable.

Moreover, in a contingency table, it is psychologically easier to read a table

with percentages that add to 100% down a column rather than across a row, as

in Table 1.

• Researchers vary in the level of precision shown in tables with bivariate

descriptive statistics. It is usually adequate to present percentages to one deci-

mal place (e.g., 45.8%).

• Correlation coefficients usually are reported to two decimal places (e.g., r �
.61, r � �.06) Greater precision is rarely necessary. There should not be a

leading zero, that it, coefficients should be reported as .40, not 0.40. When the

correlation coefficient is positive, the plus sign can be omitted.

• When correlations are presented in a correlation matrix, the diagonal (i.e.,

the intersection of variable 1 with variable 1, variable 2 with variable 2, etc.)

can have the values 1.00, indicating that all variables are perfectly correlated

with themselves, as in Table 6. Researchers sometimes omit this information

because it is not informative—they either leave the diagonal blank or insert

dashes. Occasionally researchers insert information about the scales’ relia-

bility coefficients in the diagonal. The meaningful correlation coefficients

can appear either below the diagonal, as in Table 6, or above it.
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FIGURE 8 SPSS printouts of clustered (A) and stacked (B) bar charts for marital status and PPD data.
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Research Example

Here we briefly summarize some bivariate descriptive

results from a study about nurses in Missouri.

Study: “Gender differences in discipline of nurses in

Missouri” (Evangelista and Sims-Giddens, 2008)

Study Purpose: The purpose of this study was to examine

patterns of formal license disciplinary actions against male

and female nurses in the state of Missouri, where 7.5% of

nurses are male. Disciplinary actions in that state take the

form of censure (public reprimand); probation (restrictions

for a specified time period); suspension (license is placed

on hold for up to three years); and revocation.

Methods: The researchers extracted their study data

from the discipline lists of the Missouri Board of

Nursing for a 48-month period. Their data included in-

formation on the nurse’s gender, type of license (LPN or

RN), type of infraction, and type of disciplinary action

taken, for 627 cases.

Analysis: Although the researchers used various inferen-

tial statistics, their report was rich in bivariate descrip-

tive statistics. Crosstabs were a key approach, in which

nurses’ gender was crosstabulated with type of infrac-

tions and disciplinary actions taken.

Key Findings: The researchers found that males

received 18.9% of the disciplinary actions over the 

4-year period—a 2.5 greater share than their represen-

tation in nursing. Drug use accounted for a high

percentage of disciplinary actions for both males and

females, as shown in Table 7. Gender differences were

most pronounced for relatively infrequent types of

infraction. For example, the rates for males were more

than twice as high as those for women for such in-

fractions as abuse of a patient (7.6% of male infrac-

tions, 1.8% of female infractions) and sexual contact

with a patient (males, 3.4%, females, 1.2%). By con-

trast, female rates were more than double that of males

for forgery (3.1% versus 0.8%, respectively). There

were also several infractions that were committed ex-

clusively by female nurses, such as alcohol use on the

job (2.4%) and leaving post without notification

(1.6%). The researchers presented a clustered bar

chart in their report, which showed the relationship be-

tween nurse’s gender and type of disciplinary action

taken. Female nurses (30%) were more likely than

male nurses (20%) to be censured. Conversely, a high-

er percentage of infractions by males (19%) than by

females (10%) resulted in license revocation. Dis-

parities in disciplinary actions led the researchers to

suggest further explorations of the roles of nursing

culture and societal view on gender in the disciplinary

process.

TABLE 7 Top Eight Disciplined Infractions in Missouri, by Nurse’s Gender

Type of Infraction Males n (%) Females n (%) Total N (%)

Drug abuse at work 36 (30.3) 117 (23.0) 153 (24.2)
Drug abuse off work 15 (12.6) 63 (12.4) 78 (12.4)
Violating a prior Board 
agreement

9 (7.6) 46 (9.1) 55 (8.8)

Working with lapsed license 2 (1.7) 36 (7.1) 38 (6.1)
Care errors 4 (3.4) 32 (6.3) 36 (5.7)
Medication errors 8 (6.7) 26 (5.1) 34 (5.4)
Providing care without 
physician order

2 (1.7) 26 (5.1) 28 (4.5)

Documentation errors 8 (6.7) 19 (3.7) 27 (4.3)

All other infractionsa 35 (29.4) 143 (28.1) 178 (28.4)

Total 119 (100.0) 508 (100.0) 627 (100.0)

aThere were 20 other types of infractions, each of which represented under 4% of all infractions

(e.g., murdering a patient, falsifying documents, theft, sexual contact with a patient).

Abridged and adapted from Table 1 of Evangelista & Sims-Giddens (2008). The table was titled

“Disciplined infractions by gender, within gender, and percentage of total infractions.”
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Summary Points

• Bivariate descriptive statistics are used to

describe relationships between two variables.

• A contingency (or crosstabs) table is a two-

dimensional frequency distribution that cross-
tabulates the frequencies of two nominal-level (or

ordinal-level) variables.

• The number of cells in a contingency table is the

number of categories of the first variable multi-

plied by the number of categories of the second

(e.g., 2 � 3 � 6 cells).

• Each cell in a contingency table contains informa-

tion about the counts and percentages for the spec-

ified crosstabulated categories. Percentages can be

computed as row percentages, column percent-
ages, or overall percentages.

• Statistical risk indexes have been developed to

describe risk exposure and intervention effects,

and are useful for facilitating clinical decisions.

Most risk indexes are appropriate for 2 � 2 situa-

tions, such as when two groups (e.g., experimental

versus control) are compared on a dichotomous

outcome (e.g., alive/dead).

• Absolute risk is an index that expresses what per-

centage of those in a risk-exposed (or control)

group (ARE) experience an adverse outcome, and

what percent in a nonexposed (or experimental)

group (ARNE) experience the bad outcome.

• Absolute risk reduction (ARR) expresses the es-

timated proportion of people who would be spared

from an adverse outcome by nonexposure to the

risk (or receipt of an intervention).

• Relative risk (RR) is the estimated proportion of

the original risk of an adverse outcome that occurs

in association with the risk exposure (or, failure to

get an intervention).

• Relative risk reduction (RRR) is the estimated

proportion of risk associated with exposure that is

reduced when there is no exposure to the risk

factor—or, in the context of an intervention, the

estimated proportion of risk that is reduced as a

result of the intervention.

• The odds is the proportion of people with an ad-

verse outcome relative to those without it, and the

odds ratio (OR) is the ratio of the odds for the at-

risk versus not at-risk (or treated versus untreated)

groups.

• The number needed to treat (NNT) is an esti-

mate of how many people would need to receive

an intervention (or avoid risk exposure) to prevent

one adverse outcome.

• A correlation is a bond or connection between

variables. Correlation analysis is most often used

to describe the magnitude and direction of linear
relationships between two variables measured on

an interval or ratio scale.

• Relationships between two variables can be graphed

on a scatterplot, which plots values of one vari-

able along the X axis and simultaneously plots val-

ues of the second on the Y axis.

• In a scatterplot, the points on the graph cluster

closely along a straight diagonal line when the cor-

relation is strong. Lines sloping from the lower left

corner to the upper right corner reflect positive
relationships—high values on the first variable are

associated with high values on the second. Lines

sloping from the upper left to the lower right reflect

negative relationships—high values on one vari-

able are associated with low values on the other.

• Researchers usually compute a correlation coeffi-
cient to efficiently summarize the magnitude and

direction of linear relationships.

• Correlation coefficients range from �1.00 for a

perfect negative relationship through .00 for no rela-

tionship to �1.00 for a perfect positive relationship.

• A perfect relationship occurs when the values of

one variable can be used to perfectly predict the

values of the second. The greater the absolute value

of the coefficient, the stronger the relationship.

• The most widely used correlation coefficient is

the Pearson product moment correlation, also

referred to as Pearson’s r.

• A correlation matrix is a two-dimensional dis-

play that shows correlation coefficients between

all pairs of variables.
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Exercises

The following exercises cover concepts presented in this

chapter. Answers to Part A exercises that are indicated with a

dagger (†) are provided here. Exercises in Part B involve

computer analyses and answers and comments are offered on

the Web site.

Experimental 1 2 2 1 1 1 2 1 2 1 2 1 1 1 2

Control 2 2 1 2 2 2 1 2 1 2 2 1 1 2 2

PART A EXERCISES

A1. The following data designate whether or not patients com-

plied with a medication regimen (1 � yes, 2 � no), for an

experimental group that participated in a special interven-

tion designed to promote perceived mastery over health

events, and a “usual care” control group:

PART B EXERCISES

B1. The SPSS dataset Polit2SetB has a number of health-

related variables. Use this dataset to create a contingency

table that crosstabulates the women’s poverty status (poverty,
coded 1 for those below the poverty line and 2 for those

above it) with a four-category ordinal variable indicating

how frequently the women felt highly stressed in the prior

month (stressed). To do this, select Analyze ➜ Descriptive

Statistics ➜ Crosstabs. When the dialog box appears, move

the variable stressed (Variable #20) into the slot for Rows,

and move the variable poverty (Variable # 9) into the slot for

Column. Click the pushbutton labeled Cells, and click

Observed under Counts, and Row and Column under

Percentages. Click Continue and then OK to execute the

procedure. Then answer the following questions: (a) What

percentage of women was below the poverty level? (b) What

percentage of women was stressed almost all the time?

(c) What percentage of women above the poverty level was

stressed none of the time? (d) What percentage of women

who were stressed none of the time was below the poverty

level? (e) How would you characterize the women in the cell

with the greatest frequency?

B2. Using the same SPSS dataset (Polit2SetB), run a crosstab

between poverty status (poverty) and current smoking sta-

tus (smoker, Variable #15, which is coded 0 for nonsmokers

and 1 for smokers). This time, check the box on the opening

dialog box that says “Display clustered bar charts.” Run

this procedure twice, putting poverty status as the row vari-

able for one run, and as the column variable for the second

run. Which chart do you think does a better job of charac-

terizing the relationship between poverty and smoking?

B3. This exercise involves producing risk index statistics,

again using the dataset Polit2SetB. Run the SPSS

Crosstabs procedure, using poverty status (poverty) as the

risk exposure variable—i.e., inserting it as the row vari-

able. Then find Variable #43 toward the end of the variable

list (health), which is a health status variable that di-

chotomized answers to a question that asked women to

self-rate their health. Those who said they were in good,

very good, or excellent health are coded 1, while those

who said they were in fair or poor health were coded 0.

Use health as the column variable in the Crosstabs. Click

on the Cells pushbutton, and click on Row under

Percentages. Then hit Continue and click the pushbutton

for Statistics. On the right-hand side, click on the option

for Risk, then click Continue and OK. Then answer these

questions: (a) What is the absolute risk of being in fair-to-

poor health for women below the poverty level and above

the poverty level? (b) What is the odds ratio for the effect

of exposure to poverty (versus nonexposure) on the out-

come of fair-poor health? (c) What is the relative risk of

exposure to poverty (versus nonexposure) on the outcome

Construct a contingency table for these data, computing

both row and column percentages for each of the four cells.

A2. Examine the results in Table 7. (a) Are the percentages

shown in this table row percentages or column percent-

ages? (b) Compute the percentages the opposite way, and

then answer this question: Given that males represent 7.5%

of all licensed nurses in Missouri, which (if any) infractions

in the table were committed by males at a rate lower than

their representation among nurses in that state? (c) Based

on the recomputed percentages in Exercise A2b, for which

infraction were male nurses most notably overrepresented?

A3. The contingency table below presents fictitious data re-

garding an intervention to reduce pressure ulcers in nurs-

ing home residents. Using these data, compute ARE,

ARNE, ARR, RR, RRR, OR, and NNT.

Pressure 
Ulcer

No Pressure
Ulcer Total

Control Group 15 35 50
Experimental Group 5 45 50
Total 20 80 100

A4. Below are values for diastolic and systolic blood pressure

for 10 people:

Diastolic 90 80 90 78 76 78 80 70 76 74
Systolic 130 126 140 118 114 112 120 110 114 116

Construct a scatterplot that shows the relationship between

the variables. Verbally describe the direction and magni-

tude of the relationship.

A5. Compute the correlation coefficient (Pearson’s r) to

summarize the relationship for the blood pressure data

presented in question A4. How accurate was your verbal

description of the scatterplot, as compared to the value of

the coefficient?

†

†

†

†

†

†

†
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of fair-poor health? (d) State what the relative risk index

means.

B4. Create a correlation matrix with four variables in the

Polit2SetB dataset. The four variables are Variables #11, 18,

44, and 45: Number of visits to the doctor in the past 12 months

(docvisit); body mass index (bmi); standardized score on the

Short-Form Health Survey or SF12, Physical health compo-

nent subscale (sf12phys); and standardized score on the Short-

Form Health Survey, Mental health component subscale

(sf12ment). The SF-12 is a brief, widely used measure of

health status. In this dataset, standardized T scores were creat-

ed using national norms based on a national mean of 50.0 and

an SD of 10.0. For both subscales, higher scores represent

more favorable health. To produce a correlation matrix, use

Analyze ➜ Correlate ➜ Bivariate. Move the four variables

into the variable list. The type of correlation should be set to

Pearson. Click on the Options pushbutton, and select means

and standard deviations under Statistics and Exclusion of

cases pairwise under Missing Values. Then run the analysis

and answer the following questions based on the output,

ignoring information labeled “Sig. 2-tailed”: (a) On the SF-12

subscales, were women in this sample, on average, about as

healthy—both physically and mentally—as people nationally?

(b) Are the correlations in the matrix presented above or below

the diagonal? (c) What is shown in the diagonal in the SPSS

output? (d) What is the strongest correlation in the matrix?

(e) What is the weakest correlation in the matrix? (f) Which

variable included in this analysis is most strongly correlated

with the women’s body mass index (bmi)?
B5. Run crosstabs to describe the relationship between women’s

current employment status and health-related characteristics

in this sample of low income women, using the following

variables in the Polit2SetB dataset: currently employed

(worknow), does not have health insurance (noinsur), smokes

cigarettes (smoker), health limits ability to work (hlthlimt),
and in fair-poor health (health). Create a table summarizing

the results, comparing women who were or were not working

with regard to unfavorable health outcomes. Then write a

paragraph summarizing the information in the table.

B6. Select several interval-level or ratio-level variables from

the Polit2SetB dataset and do some basic descriptive sta-

tistics (means, SDs, etc.) for the selected variable. Then do

a correlation matrix to explore relationships among the

variables. Write a paragraph summarizing what you

learned about the variables.

†

†

Answers to Exercises
A1.

A2. a. The percentages shown are column percentages, i.e., within each sex group.

b. There are two infractions for which males committed fewer than 7.5% of the infractions, as determined through row per-

centages: working with a lapsed license (5.3% of all infractions) and providing care without a physician order (7.1%).

c. Among infractions listed in this table, male nurses were most markedly overrepresented, relative to their overall proportion

among Missouri nurses, with regard to documentation errors (29.6% of all such infractions).

A3. ARE � .30 (30.0%); ARNE � .10 (10.0%); ARR � .20 (20.0%); RR � 3.0; RRR � 2.0; OR � 3.857; and NNT � 5.

A5. r � .91

Experimental Control Total

Complied 9

64.3% (Row)

60.0% (Column)

5

35.7% (Row)

33.3% (Column)

14

(100.0%)

Did not 
comply

6

37.5% (Row)

40.0% (Column)

10

62.5% (Row)

66.7% (Column)

16

100.0%

Total 15

100.0%

15

100.0%

30

100.0%
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GLOSSARY
Absolute risk reduction (ARR) The difference between the absolute risk in one group (e.g., those exposed to an intervention) and

the absolute risk in another group (e.g., those not exposed); sometimes called the risk difference or RD.

Absolute risk The proportion of people in a group who experienced a specified outcome, usually expressed as a negative outcome.

Absolute value The value of a number regardless of its positive or negative sign (e.g., the absolute value of 10, symbolized as

| 10|, is 10).

Bivariate descriptive statistics Statistics used to analyze the empirical relationship between two variables.

Contingency table A two-dimensional table that displays a crosstabulation of the frequencies of two categorical variables.

Correlation coefficient An index that summarizes the magnitude and direction of a relationship between two variables; correla-

tion coefficients typically range from +1.00 (for a perfect positive relationship) through .00 (for no relationship) to 1.00 (for a

perfect negative relationship).

Correlation matrix A two-dimensional display showing the correlation coefficients between all combinations of variables of in-

terest.

Correlation A bond between variables, wherein variation in one variable is related to variation in the other.

Cross products The multiplication of deviation scores for one variable by the deviation scores for the second; used in the calcula-

tion of covariances and correlations.

Curvilinear relationship A relationship between two continuous variables such that, when plotted in a scatterplot, a curve rather

than a straight line is formed.

Inverse relationship A negative relationship between two variables; i.e., a relationship characterized by the tendency of high val-

ues on one variable to be associated with low values on the second.

Marginal frequencies Frequencies summarizing one of the dimensions of a crosstabs table (a row or a column), so called because

they are found in the margins of the table; sometimes called marginals.

Negative relationship A relationship between two variables in which there is a tendency for higher values on one variable to be

associated with lower values on the other; also called an inverse relationship.

Number needed to treat (NNT) An estimate of how many people would need to receive an intervention to prevent one undesir-

able outcome, computed by dividing 1 by the value of the absolute risk reduction.

Odds ratio (OR) The ratio of one odds to another odds, e.g., the ratio of the odds of an event in one group to the odds of an event

in another group;  used as a key risk index and, in logistic regression, as a measure of the effect of a predictor on the outcome, with

other predictors controlled.

Odds The ratio of two probabilities, namely the probability of an event occurring to the probability that it will not occur, calculat-

ed by dividing the number of people who experienced an event by the number for whom it did not occur.

Perfect relationship A relationship between two variables such that the values of one variable permit perfect prediction of the val-

ues of the other; indicated as 1.00 or 1.00.

Positive relationship A relationship between two variables in which there is a tendency for high values on one variable to be as-

sociated with high values on the other.

�

�

�
�
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Relative risk (RR) The risk of an unfavorable event occurring given one condition, versus the risk of it occurring given another

condition; computed by dividing the absolute risk for one group (e.g., an exposed group) by the absolute risk for another (e.g., the

nonexposed); also called the risk ratio.

Relative risk reduction (RRR) The estimated proportion of baseline (untreated) risk that is reduced through exposure to the in-

tervention, computed by dividing the absolute risk reduction (ARR) by the absolute risk for the control group.

Scatterplot A graph depicting the relationship between two continuous variables, with values of one variable on the X axis and

values of the second variable on the Y axis.

Crosstabulation The calculation of a two-dimensional frequency distribution for two categorical variables (e.g., gender—

male/female—crosstabulated with smoking status— smoker/nonsmoker); the results are typically presented in a contingency

(crosstabs) table.

Experimental group The participants in a clinical trial who receive the experimental treatment or intervention.

Cell The intersection of a row and column in a table with two or more dimensions.

Linear relationship A relation between two continuous variables such that when data values are plotted in a scatterplot, a straight

line is formed.

Pearson’s r The most widely used correlation coefficient, designating the magnitude and direction of a relationship between two

variables measured on at least an interval scale; also called the product-moment correlation.

Product moment correlation coefficient (r) The most widely used correlation coefficient, designating the magnitude and direc-

tion of relationship between two variables measured on at least an interval scale; also referred to as Pearson’s r.

Bivariate Description: Crosstabulation, Risk Indexes, and Correlation
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Descriptive statistics allow researchers to depict the characteristics, circumstances, and behaviors of their sam-

ples. Most research question, however, are not about the attributes of the particular people who comprise a sam-

ple, but rather about a larger population.

Suppose, for example, a researcher hypothesized that transcutaneous nerve stimulation is an effective

means of reducing pain from a surgical incision during wound dressing. Fifty patients in an experimental group

are given electrical stimulation before and during wound dressing, while 50 patients in a control group get usual

care. Participants in both groups rate their pain on a visual analog scale, where the values can range from 0 (no

pain) to 100 (maximum pain). Using descriptive statistics, the researcher determines that the mean pain rating is

72.0 and 77.0 in the experimental and control group, respectively. At this point, the researcher can only conclude

that the particular 50 people in the experimental group perceived less pain, on average, than the particular

50 people in the control group. The researcher does not know whether the five-point average difference in pain

ratings would be observed in a new sample, and therefore cannot conclude that the transcutaneous nerve stimu-

lation is an effective treatment for alleviating pain. Because researchers almost always want to be able to generalize

beyond their sample to some broader population, they apply inferential statistics. Inferential statistics allow

researchers to draw conclusions about population parameters, based on statistics from a sample.

We all make inferences regularly, and every inference contains some uncertainty. For example, when we

eat at a new restaurant and are served a meal that we do not enjoy, we may infer that the restaurant is mediocre.

Statistical Inference

Fundamentals of Probability
Probability of an Event

Probability of Consecutive Events

Probability as an Area

Sampling Distributions
Characteristics of Sampling Distributions

Standard Error of the Mean

Estimation of Parameters
Confidence Intervals

Confidence Intervals Around a Mean

Confidence Intervals and the t Distribution

Confidence Intervals Around Percentages

and Risk Indexes

Hypothesis Testing
The Null Hypothesis

Type I and Type II Errors

Controlling the Risk of Errors

Establishing Probable and Improbable Results

Test Statistics

Steps in Hypothesis Testing

Research Applications
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1 A fuller explication of probability is presented in several statistical textbooks, such as those by

Gravetter & Wallnau (2008), and Jaccard & Becker (2001).

Our conclusion may be erroneous—perhaps we ordered the one dish on the menu

that is below the restaurant’s normal standards. We could only be certain about the

restaurant’s overall quality by tasting every menu item.

Similarly, when a researcher makes inferences using inferential statistics, there

is always a risk of error. Only by obtaining information from populations can

researchers have complete confidence that their conclusions are accurate. Because

researchers seldom collect data from an entire population, they use a statistical

framework that allows them to assess how likely it is that the conclusions based on

sample data are valid. This framework uses the laws of probability.

FUNDAMENTALS OF PROBABILITY

In the hypothetical study to test the effectiveness of the transcutaneous nerve treat-

ment for alleviating pain, there are two mutually exclusive possibilities:

H0: The intervention is not effective in reducing pain.

H1: The intervention is effective in reducing pain.

The first possibility is the null hypothesis. The null hypothesis (symbolized in statistics

books as H0) states that there is no relationship between the independent variable (the

transcutaneous nerve treatment) and the dependent variable (pain). The alternative
hypothesis (H1) is the actual research hypothesis, which states the expectation that

there is a relationship between the independent and dependent variables. In the popu-

lation of all surgical patients, only one of these possibilities is correct.

The researcher in this example observed a five-point average difference in pain

ratings between the experimental and control groups. By using inferential statistics,

the researcher would be able to determine how probable it is that the null hypothesis
is false. Probability is a complex topic, with different rules for different situations. In

this section we present only an overview of probability theory, to establish a basis for

understanding the fundamental principles of statistical inference.1

Probability of an Event

When we flip a normal, two-sided coin, one of two possible outcomes can occur: We

can obtain a head, or we can obtain a tail. The probability (p) of some event, such as

obtaining a head on a coin toss, can be defined as the following ratio:

In the coin toss example, we can use this ratio to determine the probability that heads

will come up:

Probabilities are expressed as proportions, so we can say that the probability of

heads (or tails) is .50. (In everyday parlance, we might say that there is a 50-50 chance

of having the coin come up heads.) On a six-sided die, the probability of rolling, say,

a 3 is 1/6, or .17. In a normal, shuffled deck of 52 cards, the probability of randomly

p 1heads 2� 1 head

2 possible events 1heads or tails 2 �
1

2

p 1event 2� number of ways the specified event can occur

total number of possible events
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drawing the queen of spades is 1/52, or .02. A probability always ranges from .00

(completely impossible) to 1.00 (completely certain).

The probability of an event can also be interpreted with a “long run” perspec-

tive. For example, in 100,000 coin tosses, we would expect 50,000 heads. Over the

long run, with a large enough number of trials, the proportion of heads should be .50.

Some readers may have noticed that probability is similar in form to relative

frequencies.

Probability of Consecutive Events

Another situation involves predicting the probability of consecutive events. For

example, we might want to determine the probability of obtaining heads twice in

a row on two independent coin tosses. The multiplicative law in probability provides

a formula for this situation:

where A is the first independent event

B is the second independent event

In the coin toss example, the probability of two consecutive heads is:

In the same fashion, the probability of three consecutive heads is:

Knowing this formula, we could calculate the probability for all possible out-

comes in consecutive coin tosses. Table 1 presents a partial listing of outcomes,

focusing primarily on the probability of obtaining consecutive heads. In the first toss,

the probability of heads (H) and tails (T) is, in each case, .50. The far-right column

shows that the probability of obtaining either heads or tails is 1.00—that is, it is

100% certain that one of these outcomes will occur. In the second toss, the probabil-

ity of two consecutive heads (HH) is .25, as is the probability of heads then tails

(HT), tails then heads (TH), or two tails (TT). From the third toss on, the table shows

only probabilities for consecutive heads. The probability of five consecutive heads,

for example, is .031. Fewer than five times out of 100 would we expect to obtain five

heads in a row.

 p 13 consecutive heads 2 � .50 � .50 � .50 � .125

 p 13 consecutive heads 2 � p 1heads 2 � p 1heads 2 � p 1heads 2

 p 1heads and then heads 2 � .50 � .50 � .25

 p 1heads and then heads 2 � p 1heads 2 � p 1heads 2

p 1A and then B 2 � p 1A 2 � p 1B 2
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TABLE 1 Probabilities in Coin Toss Example

No. of 
Coins Tossed Possible Outcomes and Probabilities

Total 
Probability

1 H � .50 T � .50 1.00

2 HH � .25 HT � .25 TH � .25 TT � .25 1.00
3 HHH � .125 All others combined � .875 1.00

4 HHHH � .063 All others combined � .937 1.00

5 HHHHH � .031 All others combined � .969 1.00

6 HHHHHH � .016 All others combined � .984 1.00

7 HHHHHHH � .008 All others combined � .992 1.00

8 HHHHHHHH � .004 All others combined � .996 1.00

9 HHHHHHHHH � .002 All others combined � .998 1.00

10 HHHHHHHHHH � .001 All others combined � .999 1.00

H � Heads 
T � Tails

We can use this table to test the hypothesis that a coin is biased (for example,

that it has two heads, or is weighted to turn up heads more often than tails). Our hy-

potheses may be stated formally as follows:

H0: The coin is fair.

H1: The coin is biased.

To test the hypothesis that the coin is biased, we obtain some data by tossing

the coin ten times. Let us assume that we obtained 10 heads. We can consult

Table 1 to learn how probable this outcome is. The table indicates that the proba-

bility of getting 10 consecutive heads is .001. That is, by chance alone we would

obtain 10 heads on 10 consecutive tosses only once in 1,000 times. We might then

decide to reject the null hypothesis, concluding that there is a high probability that

the coin is biased.

This example is similar to procedures used in statistical inference.

Researchers use probability tables to assess whether an observed outcome (e.g., a

five-point difference in average pain ratings) is likely to have occurred by chance, or

whether the outcome had a high probability of reflecting a true outcome that would

be observed with other samples from the same population. Based on information in

probability tables, researchers make decisions to accept or reject the null

hypothesis.

Probability as an Area

As noted earlier, probability is similar to relative frequencies. Just as relative

frequencies can be graphed in histograms or frequency polygons, so too can proba-

bilities be graphed in probability distributions. For example, suppose we graphed

the probability of obtaining 1, 2, 3, 4, 5, and 6 dots on the roll of a single die. For

each number, the probability would be 1/6, or .167. Figure 1 presents a histogram of

the probability of obtaining one to six dots on a single roll of one die.

The area within the histogram is exactly 1.0 (i.e., 6 � .167), the total of all the

probabilities that a die will yield a number between one and six. From this distribu-

tion, we can determine various probabilities from the area within the histogram.
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1 2 3 4 5 6

P

Number of Dots on the Die

.333

.167

FIGURE 1 Probability distribution of dots in the roll of one die.

45.0 75.0

μ =
σ =

60.0
5.0

70.050.0 65.055.0 60.0
Inches

f

FIGURE 2 Hypothetical distribution of heights for a population of 1,000 12-year-old
children.

For example, the probability of rolling a five or a six (the shaded area on Figure 1) is

.333 (2 � 6). The probability of obtaining a number greater than one on a single roll

(the hatched area) is .833 (5 � 6).

Probability distributions can also be constructed for continuous variables,

and are sometimes called probability density functions. Suppose, for example, we

collected data on the heights of a population of 1,000 12-year-old children and

constructed a frequency polygon (Figure 2). The mean (�) of this population dis-

tribution is 60.0 inches, and the standard deviation (�) is 5.0 inches. What is the

probability that a randomly selected child from this population would be, say,

65 inches tall or taller? The shaded area in the right tail of this figure, correspond-

ing to heights 65 inches or greater, is approximately 16% of the total area under

this curve. The proportion of 12-year-old children who are 65 inches or taller can

be regarded as the probability that one child selected at random from this popula-

tion of 1,000 children will be at least 65 inches tall. In other words, p � .16 in this

example.

How did we determine that heights of 65 inches or greater account for 16% of

the distribution? When data values are normally distributed (or approximately so),

the area under a curve can be determined by converting raw scores to standard scores

and consulting an appropriate table.
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SAMPLING DISTRIBUTIONS

Suppose that we were unable to measure the height of all 1,000 12-year-old children

in our hypothetical population, but that instead we had to rely on data from a sample.

If we randomly selected 25 children and measured their height, would the obtained

sample mean be exactly 60.0 inches? We might by chance obtain a mean of 60.0, but

it would also be possible to obtain such means as 60.6, or 58.8, or 62.2. A sample

statistic is often unequal to the value of the corresponding population parameter

because of sampling error.

Sampling error reflects the tendency for statistics to fluctuate from one sample

to another. The amount of sampling error is the difference between the obtained sam-

ple value and the population parameter. A researcher does not, of course, know the

amount of sampling error: If the population parameter were known, there would be

no need to estimate it with data from a sample. Inferential statistics allow researchers

to estimate how close to the population value the calculated statistic is likely to be.

The concept of sampling distributions, which are actually probability distributions,

is central to estimates of sampling error.

Characteristics of Sampling Distributions

To understand sampling distributions, you need to imagine an activity that would

never actually occur. Suppose that we randomly selected 25 12-year-old children

from the population of 1,000 children, and calculated their mean height. Now con-

sider replacing the 25 children, drawing another sample of 25 children, and calculat-

ing another mean. Table 2 shows the means and the sampling error—the sample

mean minus the population mean of 60.0—for 20 such samples. We can see that the

sampling error ranges from very small amounts (0.1 inch) to much larger amounts

(2.1 inches). Now suppose we repeated the process of selecting new samples of

25 children and calculating their mean height over and over again, an infinite number

of times. If we then treated each sample mean as a new “data point,” we could plot

these means in a frequency polygon. The hypothetical distribution, shown in

Figure 3, is a sampling distribution of the mean—a theoretical probability distri-

bution of the means of an infinite number of samples of a given size from a popula-

tion. There is a different sampling distribution for every sample size. For example,

the sampling distribution of the mean for samples of 25 children is different from

the sampling distribution of the mean for samples of 50 children from the same

population.
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TABLE 2 Sample Means of Heights in Inches in 20 Random Samples
of 25 Children Drawn from a Population of 1,000 12-year-old Children

Sample Mean

X

Sampling Error

X � M

Sample Mean

X

Sampling Error

X � M

61.0 1.0 59.9 �0.1

59.4 �0.6 60.4 0.4

58.9 �1.1 61.1 1.1

62.1 2.1 59.7 �0.3

60.3 0.3 60.2 0.2
59.8 �0.2 58.0 �2.0

60.1 0.1 61.7 1.7
59.6 �0.4 59.6 �0.4

58.8 �1.2 59.1 �0.9

60.9 0.9 59.4 �0.6

57.0 63.0

X =
SD (SEM) =

60.0
1.0

62.058.0 61.059.0 60.0
Inches

P

FIGURE 3 Sampling distribution of heights for samples of 25 12-year-old children.

Sampling distributions are theoretical because, in practice, no one draws an in-

finite number of samples from a population. Their characteristics can be modeled

mathematically, however, and have been determined by a formulation known as the

central limit theorem. This theorem stipulates that the mean of the sampling distri-

bution is identical to the population mean. In other words, if we calculated the mean

heights for an infinite number of samples of 25 children drawn from the population

of 1,000 12-year-old children, the average of all the sample means would be exactly

60.0, as shown in Figure 3. Moreover, the average sampling error—the mean of the

( )s—would always equal 0. As we see in Table 2, some sample means overes-

timated the population mean, and others underestimated it. With an infinite number

of samples, the overestimates and underestimates would cancel each other out.

Another feature of sampling distributions is that if the score values in the pop-

ulation are normally distributed, the sampling distribution of the mean will also be

normal. Moreover, even if the distribution of scores in the population is not normal,

the sampling distribution will increasingly approach being normal as the size of the

sample on which the distribution is based gets larger. Because sampling distributions

usually approximate a normal distribution, we can make probability statements

about the likelihood of obtaining various sample means based on information about

the area under the curve. Before we can do so, however, we need to determine the

standard deviation of the sampling distribution.

X � m

83



Statistical Inference

Standard Error of the Mean

The standard deviation of a sampling distribution of the mean has a special name: the

standard error of the mean (SEM). The term “error” indicates that the sample means

in the distribution contain some error as estimates of the population mean—sampling

error. The term “standard” signifies that the SEM is an index of the average amount of

error for all possible sample means. The smaller the SEM, the more accurate are the

sample means as estimates of the population value. The larger the SEM, the greater the

probability that a sample mean will be a poor estimate of the population mean.

Most sampling distributions are approximately normal, and so we can use the

SEM to estimate the probability of obtaining a sample mean in a specified range.

Figure 3 shows that with samples of 25, the distribution of sample means for heights

of 12-year-old children has a standard deviation (i.e., an SEM) � 1.0. As you know,

95% of the values in a normal distribution lie within about �2 SDs of the mean.

Thus, we can estimate that the probability is .95 that the mean height of a sample of

25 children will lie between 58.0 and 62.0. In other words, about 95% of all sample

means randomly selected from the population would be within 2 inches of the true

parameter, given a sample of 25 children. Only 2.5% of the sample means would be

less than 58.0 and only 2.5% would be greater than 62.0—a total of 5% of the area of

the sampling distribution, located in the two tails.

With information about the SEM, researchers can interpret a sample mean

relative to the population mean. But, since researchers do not actually construct

sampling distributions, how can the SEM be calculated? How, for example, did we

know that the SEM for the distribution in Figure 3 is 1.0? Fortunately, statisticians

have developed a formula for estimating the actual SEM based on data from a single

sample:

where SEM � estimated standard error of the mean

SD � standard deviation of the sample

N � number of cases in the sample

In our current example, suppose that the SD for our sample of 25 students is

5.0. We can use this formula to calculate the following estimate of the SEM:

Thus, the estimated standard deviation of the sampling distribution is 1.0.

The smaller the SEM, the greater is the confidence that researchers have in

their estimates of the population value. From the SEM formula, we can see that there

is a way for researchers to decrease the value of the SEM and thus improve the accu-

racy of their estimates of the population mean: They need only increase the size of

their sample. In our present example, suppose that we drew a sample of 100 12-year-old

children rather than 25. With a sample of 100 children and the same SD of 5.0, the

estimated SEM would be:

As sample size increases, the probability is higher that the sample mean will

be close to the value of the population mean. This is because having a large N

SEM �
5.0

2100
� 0.5

SEM �
5.0

225
� 1.0

SEM �
SD

2N
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promotes the likelihood that extreme cases (very short children and very tall chil-

dren) will cancel each other out.

The formula for the SEM also indicates that the greater the homogeneity of the

population (i.e., the smaller the SD), the smaller is the standard error of the mean. If

the SD of the sample had been 2.5 inches rather than 5.0 inches, the estimated SEM
would be:

Thus, small samples and a heterogeneous population lead to large SEMs; conversely,

large samples and a homogeneous population increase the likelihood that the sam-

pling error will be small. Researchers cannot control population heterogeneity, but

they can increase the precision of their estimates by using large samples.

TIP: The standard error of the mean is sometimes abbreviated as SE in
journals or as in some statistics books. In SPSS, values of SEM are
labeled Std err or Std error.

ESTIMATION OF PARAMETERS

Statistical inference consists of two types of approach: estimation of population pa-

rameters and testing of hypotheses. In both cases, the overall goal is the same: to use

data from a sample to draw inferences about populations, and in both cases the con-

cepts of sampling distributions and standard errors are central features. Yet, there are

important differences in these approaches.

In nursing journals, the hypothesis-testing approach has predominated, but that

situation is changing. The emphasis on EBP has heightened interest among clinicians in

learning not only whether a hypothesis was supported (via traditional hypothesis

tests) but also the estimated parameter value and the accuracy of the estimate (via pa-

rameter estimation). Many medical journals require estimation information because it

is seen as more useful, reflecting the view that this approach offers information

about both clinical and statistical significance (e.g., Braitman, 1991; Sackett, Straus,

Richardson, Rosenberg, and Haynes, 2000).

In this section we present an overview of parameter estimation and offer exam-

ples based on one-variable descriptive statistics.

Confidence Intervals

Parameter estimation is used to estimate a population value, such as a mean, rela-

tive risk index, or a mean difference between two groups (e.g., experimental vs. con-

trol). Estimation can take two forms: point estimation or interval estimation. Point
estimation involves calculating a single statistic to estimate the parameter. For ex-

ample, if we drew a sample of 25 students and calculated the mean height to be 61.0

inches (the first sample mean in Table 2), this would be our point estimate of the

population mean.

The problem with point estimates, which are simply descriptive statistics, is that

they offer no context for interpreting their accuracy. How much confidence can we

place in the value of 61.0 as an estimate of the parameter? A point estimate gives no in-

formation regarding the probability that it is correct or close to the population value.

s�x

s �x �
2.5

2100
� 0.25
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An alternative to point estimation is to estimate a range of values that has a

high probability of containing the population value. For example, it is more likely

that the population mean lies between 59.0 and 63.0 than that it is exactly the calcu-

lated sample mean of 61.0. This is called interval estimation because the estimate is

an interval of values.

Interval estimation involves constructing a confidence interval (CI) around

the point estimate. (The upper and lower limits of the CI are called confidence
limits.) A CI around a sample mean communicates a range of values for the population

value, and the probability of being right. That is, the estimate is made with a certain

degree of confidence of capturing the parameter.

TIP: Confidence intervals address one of the key EBP questions for
appraising evidence: How precise is the estimate of effects?

Confidence Intervals Around a Mean

Probability distributions such as those discussed earlier are used to construct CIs
around a sample mean, using the SEM as the basis for establishing the confidence

limits. Let us assume that we know that the true value of the SEM in our example is

1.0, and that we also know that the heights in the population of 1,000 children are

normally distributed. (The true value of the SEM is denoted with a Greek symbol,

i.e., .) We can then use the normal distribution to construct a CI. By convention,

researchers most often calculate a 95% CI. As noted earlier, 95% of the scores

in a normal distribution lie within about �2 SDs from the mean. More precisely,

95% of the scores lie within 1.96 SDs above and below the mean. We can now build

a 95% CI by using the following formula:

where � the sample mean

� the actual SEM of the sampling distribution

This statement indicates that we can be 95% confident that the population

mean lies between the confidence limits, and that these limits are equal to 1.96 times

the true standard error, above and below the sample mean. In the present example,

the confidence limits would be:

The last statement indicates that the confidence is 95% (i.e., the probability is .95)

that the population mean (m) lies between 59.04 and 62.96. (Strictly speaking, it is more

accurate to interpret a CI in terms of long-range performance: Out of 100 sample means

with samples of 25 children, 95% of such CIs would contain the population mean.)

Researchers can control the risk of being wrong by establishing different

confidence levels. The 95% confidence level is most often used, but researchers

sometimes want less risk of making an error. With a 95% confidence level there is a

5% risk, but with a 99% confidence level, there is only one chance in 100 of making

 95% CI � 159.04 	 m 	 62.96 2 95% CI � 161.0 ; 1.96 2 95% CI � 161.0 ; 11.96 � 1.0 2 2

s x

X

95% CI � 1X ; 11.96 � s x 2

s x
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3 The t distribution is a theoretical distribution that was developed by W. S. Gossett, who wrote under the

name of Student. For this reason, the distribution is sometimes referred to as Student’s t distribution.

an error. There is, however, a tradeoff: The price for lower risk is less precision—that

is, the CI is wider. In a normal distribution, 99% of the scores lie within 2.58 SDs of

the mean. Thus, the formula for a 99% CI is:

In the present example, the 99% CI would be:

With a 99% CI, researchers reduce the risk that the interval will not contain the

population mean, but the interval is larger. With the 95% interval, the range between

the confidence limits is just under 4 inches. With a 99% CI, the range of possible

values for the population mean is more than 5 inches—about a 30% decrease in

precision. In most research situations, a 95% CI is adequate, but when important

decisions about individuals are being made, a 99% CI may be required.

Confidence Intervals and the t Distribution

In the preceding example, we stipulated an assumption that generally is untenable:

We assumed we knew that the true SEM for the sampling distribution was 1.0.

Knowing the true SEM made it possible for us to use values from the normal distri-

bution (1.96 for the 95% CI) to calculate the confidence limits. This is because when

is known and we calculate a z score for the sample mean, we are calculating the

exact number of SEMs that the sample mean is from the mean of the sampling distri-

bution. When we use an estimated SEM, we need a different distribution.

In most cases, especially if the sample size is large, the normal curve provides

a good approximation. In the present example, however, the sample size of 25 is not

particularly large. When the true SEM is not known but is estimated from sample

data—as will almost always be the case—a different theoretical distribution, known

as the t distribution,3 should be used to compute CIs.

In standard form, the t distribution is similar to a normal distribution: It is bell

shaped, symmetrical, and has a mean of 0.0. However, the exact shape of the t distribu-

tion is influenced by the number of cases in the sample. There is a different t distribu-

tion for every sample size. Figure 4 shows that when N � 5, the shapes of the t and the

normal distributions differ: The tails of the t distribution are fatter, for example, which

means that you have to go out farther into the tails to capture 95% of the area. This, in

turn, means that the CI based on the t distribution will be wider. Figure 4 also shows that

when the sample size is 30 (or larger), the normal and t distributions are similar.

Statisticians have developed tables for the area under the t distribution for dif-

ferent sample sizes and probability levels. For now, it is important only to know that

degree of freedom is equal to the sample size, minus 1 (N � 1).

sx�

1sx� 2

 99% CI � 158.42 	 m 	 63.58 2
 99% CI � 161.0 ; 2.58 2
 99% CI � 161.0 ; 12.58 � 1.0 2 2

99% CI � 1X ; 12.58 � s x 2 2
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P P

N = 30N = 5

t Distribution
Normal Distribution

FIGURE 4 Comparison of the normal and t distributions with N � 5 and N � 30.

Now we can construct the appropriate CI for the example of 25 12-year-old

children whose mean height is 61.0 inches. The formula for the CIs when the true

SEM is estimated from sample data is:

where � the sample mean

t � tabled t value at 95% CI for df � N � 1

SEM � the calculated SEM for the sample data

In our example, the calculated value of SEM is 1.0, and Table 2 of Appendix:

Theoretical Sampling Distribution Tables tells us that the value of t for the 95% CI
with 24 degrees of freedom (25 � 1) is 2.06. Thus, we would obtain the following

calculation:

We can be 95% confident that the mean height of our population of 12-year-

old children is between about 58.9 and 63.1. If we return to the sample means in

Table 2, we find that, in fact, only one of the 20 sample means (62.1) would not have

a 95% CI that captures the population mean of 60.0. The confidence limits for the

sample mean of 62.1 (the fourth mean in the first column) would be 60.04 and 64.16.

Researchers generally accept the risk that their CIs do not include the population

mean 5% of the time.

TIP: There are several ways to compute CIs around a mean within SPSS.
The simplest way is to use Analyze ➜ Descriptive Statistics ➜ Explore. If
you click on the Statistics pushbutton on the opening dialog box, you will
have an option to designate the CI value. A 95% CI is the default, i.e., the
option automatically used unless it is overriden by the analyst.

 95% CI � 158.94 	 m 	 63.06 2
 95% CI � 161.0 ; 2.06 2
 95% CI � 161.0 ; 12.06 � 1.0 2 2

X

95% CI � 1X ; 1t � SEM 2 2
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Confidence Intervals Around Percentages and Risk Indexes

Confidence intervals can be constructed around all of the descriptive statistics, including

percentages (or proportions) and risk indexes. Consider, for example, this question:

“What percentage of nursing home residents with an indwelling urinary catheter devel-

ops urinary tract infection?” This question calls for an estimated percentage, which is

the same as the absolute risk index. The estimate will be more useful if it is reported

within a 95% CI.
For percentages based on nominal-level dichotomous variables, as implied in

the above question (exposed/not exposed to catheterization and positive/negative for

infection), the applicable theoretical distribution is not a normal distribution, but

rather a binomial distribution. A binomial distribution is the probability distribu-

tion of the number of “successes” (e.g., heads) in a sequence of independent yes/no

trials (e.g., a coin toss), each of which yields “success” with a specified probability.

Using binomial distributions to build CIs around a proportion is computation-

ally complex and is almost always done by computer, and so we do not provide any

formulas here, nor are there tables for binomial distributions. Interactive Web sites

that calculate risk indexes typically calculate 95% CIs automatically, and statistical

software like SPSS also includes CI information with risk index values.

Although we do not present formulas or tables for the binomial distribution,

certain features of CIs around proportions are worth noting. First, the CI is rarely

symmetric around the sample proportion. For example, if two out of 20 sample

members were “positive” for an outcome, such as urinary tract infection, the estimat-

ed population proportion would be .10 and the 95% CI for the proportion would be

from .012 to .317, which is wider above than below .10. As the population propor-

tion shifts from .50 to higher or lower values, the binomial distribution changes

shape, becoming positively skewed for probabilities less than .50, and negatively

skewed for probabilities greater than .50.

Second, the width of the CI depends on both sample size and the value of the

proportion. The smaller the sample, and the closer the sample proportion is to .50,

the wider the CI. For example, with a sample size of 30, a 95% CI for a proportion of

.50 has a range of .374 (from .313 to .687), while that for a proportion of .10 has a

range of only .188 (from .021 to .265).

Finally, the CI for a proportion never extends below .00 or above 1.0, but a CI
can be constructed around an obtained proportion of .00 or 1.0. For example, if zero

out of our 30 patients had a urinary tract infection, the estimated proportion would be

.00 and the 95% CI would be from .000 to .116.

All of the indexes of risk, such as the ARR, RR, OR, and NNT, should be pre-

sented with CI information. The computed value of these statistics from study data

represents a “best estimate” of the population values, but CIs convey information

about the plausibility that the estimate is accurate. Formulas for constructing CIs
around the major risk indexes are presented in an appendix of DiCenso et al. (2005)

and Sackett et al. (2000), but interactive Web sites are the easiest way to construct

CIs when risk indexes are computed for a study in which you do not have direct ac-

cess to the actual data, such as in a published report.
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Example of confidence intervals around percentages and odds ratios:

Carruth, Browning, Reed, Skarke, and Sealey (2006) examined the percentage of

farm women who failed to obtain cervical cancer screening (Pap smear) in three

southern states, using data from a sample of over 2,300 women. The researchers

reported failure rates (percentages of women who failed to obtain a Pap smear in a

3-year period) for women from the three states, along with 95% CI values. For all

women in Louisiana, the failure rate was 27.9% (95% CI � 24.5, 31.3), whereas in

Texas the rate was 19.6% (95% CI � 15.6, 22.6). Odds ratios were calculated for

failure rates in relation to various potential risk factors, such as age, ethnicity, and

education. For example, the OR for white (versus nonwhite) women was 0.79

(95% CI � 0.47, 1.33). The CI included 1.0, which indicates that ethnicity was

likely unrelated to failure rates.

HYPOTHESIS TESTING

Hypothesis testing is a second approach to inferential statistics. Hypothesis testing

involves using sampling distributions and the laws of probability to make an objec-

tive decision about whether to accept or reject the null hypothesis. Although we have

seen a few examples of null hypotheses in this chapter, we elaborate on this concept

because of its importance in hypothesis testing.

The Null Hypothesis

Researchers usually have research hypotheses about expected relationships between

variables. The predicted relationship can be expressed verbally in a number of ways.

The following are examples of research hypotheses that predict a relationship be-

tween an independent and a dependent variable:

1. Length of time in labor will be different for women in an upright position from
that for women in a recumbent position.

2. Oncology patients who have high levels of fatigue will be more depressed than
patients with less fatigue.

3. Catecholamine production (measured by vanillymandelic acid excretion) is

related to a patient’s level of stress.

The italicized phrases in these hypotheses (different from, more than, related

to) embody the nature of the predicted relationship. These are the types of hypothe-

ses that researchers typically seek to support with their data. Research hypotheses

cannot, however, be tested directly. It is the null hypothesis, which states the absence
of a relationship, that is tested statistically. For instance, in the third example the re-

searcher would test the null hypothesis that catecholamine production is unrelated to

patients’ stress levels.

Hypothesis testing, which is based on rules of negative inference, begins with
the assumption that the null hypothesis is true. For example, in the coin toss example

discussed earlier, we assumed that the coin was fair. We then collected data through

coin tosses and used the results to inform our decision about the probability that this

assumption was valid. We concluded, after obtaining 10 heads in a row, that the coin

was probably biased and so we rejected the null hypothesis.

The null hypothesis is analogous to the basic assumption of innocence in

English-based systems of criminal justice: Just as an accused criminal is assumed

to be innocent until proven guilty, in research situations variables are also

assumed to be “innocent” of any relationship until there is sufficient evidence to
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FIGURE 5 The four outcomes of statistical decision making.

the contrary. In the justice system, the null and alternative hypotheses may be

formally stated as follows:

H0: The accused is innocent of committing the crime.

H1: The accused is guilty of committing the crime.

In criminal proceedings, the concept of reasonable doubt is important, and

again there is a parallel in statistical inference. When a judge instructs a jury to find

a defendant innocent if there is reasonable doubt that he or she committed the crime,

the judge is, in effect, asking the jurors to decide if p � 1.0 that the accused is guilty.

In the justice system, however, there is no objective cutoff point for determining how

much doubt is reasonable. In hypothesis testing, researchers establish a fixed proba-

bility as their criterion for “guilt” and “innocence.”

Another important difference between hypothesis testing and the justice sys-

tem concerns the language associated with decisions. Lawyers and judges often talk

about requiring proof that the accused is guilty. Researchers, however, do not use the

term proof, unless they obtain data from a population—in which case, inferential sta-

tistics would not be needed. The rejection of a null hypothesis through statistical

testing does not prove that the research hypothesis is valid; it constitutes evidence
that the null hypothesis is probably incorrect. There remains a possibility that the

null is true even though it is rejected.

Type I and Type II Errors

Because statistical inference is based on sample data that are incomplete, there is

always a risk of error. Figure 5 summarizes the four possible outcomes of statistical

decision making. When the null hypothesis is true (i.e., there really is no relationship

between the independent and dependent variables in the population), and researchers

conclude that the null is true, the correct decision has been made, as shown in the upper

left cell of the figure. Similarly, when the null hypothesis is really false and researchers

decide to reject the null (lower right cell), the correct decision is made again.

Researchers can commit two types of errors, as shown in the shaded cells of the

figure. The first is incorrectly rejecting a true null hypothesis. For example, the null may

state that there is no relationship between women’s body position and their length of time

in labor. If the researcher incorrectly rejects this null hypothesis, erroneously concluding

on the basis of sample data that length of time is higher in, say, the recumbent position,

then a Type I error has been committed. A Type I error is, in effect, a false positive.
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Researchers can also commit an error by incorrectly accepting a false null hy-

pothesis. For example, if the researcher concludes that women’s length of time in

labor is the same in both positions, when in fact labor time is really higher in the re-

cumbent position, then a Type II error (false negative) has been committed.

The consequences of making statistical errors can be most readily conveyed

with a drug-testing analogy. A Type I error might result in a totally ineffective drug

being used to treat a disease. But a Type II error might prevent a truly effective drug

from coming onto the market.

Controlling the Risk of Errors

Researchers do not, of course, realize when a Type I or Type II error is committed.

Only by knowing population values would researchers be able to definitively con-

clude that the null hypothesis is true or false.

Researchers can, however, control the probability of committing an error. Type

I errors can be controlled through the level of significance, which is the probability

level established as the accepted risk of a false positive. Inferential statistics involve

comparing a computed statistic against the probability in theoretical distributions.

The level of significance, symbolized as a (alpha), indicates the area in the theoretical

probability distribution that corresponds to the rejection of the null hypothesis.

The most widely accepted standard for the level of significance is the .05 level.

This corresponds to the 95% confidence level we discussed in the previous section.

With a .05 significance level, we are accepting the risk that out of 100 samples, we

would reject a true null five times. Conversely, with a � .05, the probability is

.95 (1 � a) that a true null hypothesis will be accepted. These probabilities, shown

in the two left-hand boxes in Figure 5, always total 1.0.

Researchers sometimes use a stricter level of significance. With an a of .01,

the risk is that in only one out of 100 samples would we erroneously reject a true

null hypothesis. With the stringent significance level of .001, the risk is even lower:

In only one out of 1,000 samples would we erroneously reject the null hypothesis.

In our example of tossing the coin to test for bias, we could have used this very

conservative .001 criterion and still rejected the null hypothesis that the coin was

fair.

Researchers can also exert some control over Type II errors, but the situation is

much more complex than with Type I errors. The probability of committing a Type II

error is symbolized as � (beta). The probability of correctly rejecting the null

hypothesis when it is false (1 � �) is the power of the statistical test. The risk of a

Type II error is affected by many factors, such as sample size, measurement quality,

the strength of underlying relationships between variables, and so on. Also, the prob-

ability of committing a Type II error increases as the risk of making a Type I error

decreases. In other words, when researchers establish a strict criterion for a, they

increase the probability of committing a Type II error.

We will say more about power and Type II errors, but we note here that many

researchers accept a very high risk of erroneously accepting a false null hypothesis.

Polit and Sherman (1990) found that many published nursing studies have insuffi-

cient power, placing them at risk for Type II errors. Although many years have

elapsed since this analysis was done, a glance through nursing research articles sug-

gests that many studies continue to be underpowered. The most straightforward

method of reducing the risk of a Type II error is to increase the size of the sample:

The larger the sample, the more powerful is the statistical test.
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FIGURE 6 Critical regions in the sampling distribution: attitudes toward IVF example.

Establishing Probable and Improbable Results

By stipulating the significance level, researchers establish a decision rule. The deci-

sion is to reject the null hypothesis if the statistic being tested falls at or beyond a

critical region (acceptance region) on the theoretical distribution, and to accept the

null hypothesis otherwise. Decision rules should be established before the data are

analyzed, to avoid bias.

The critical region corresponding to the significance level indicates what is

improbable for a null hypothesis. An example should help to clarify this process.

Suppose that we wanted to assess whether people with a fertility problem had posi-

tive or negative attitudes toward in vitro fertilization (IVF). We might ask a sample

of 100 infertility patients to express their attitude toward IVF on a rating scale that

ranged from 0 (extremely negative) to 10 (extremely positive). Our goal in this ex-

ample is to determine whether the mean attitude for the population of infertility pa-

tients is different from 5.0, the score on the rating scale that represents neutrality.

The null and alternative hypotheses are:

H0: m� 5.0

H1: m� 5.0

Suppose data from the sample of 100 patients result in a mean rating of 5.5

with an SD of 2.0. This mean is consistent with the alternative hypothesis (H1), but

can we reject the null hypothesis? Because of sampling error, we need to test for the

possibility that the mean of 5.5 occurred simply by chance, and not because the pop-

ulation has, on average, a positive attitude toward IVF.

Since hypothesis testing involves an assumption that the null hypothesis is

true, we can construct a sampling distribution that assumes that the population mean

is 5.0. Next, we need to estimate the standard deviation of the sampling distribution—

the SEM—using the sample SD:

The relevant sampling distribution is presented in Figure 6. Because we are

using the estimated SEM rather than the actual SEM, the t distribution rather than the

normal distribution is appropriate for establishing critical regions.

SEM �
2.0

2100
�

2.0

10
� 0.2
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The boundaries of the critical region for rejecting the null hypothesis are estab-

lished by multiplying the estimated SEM by the t value—i.e., 1.99� .2 � .398. As

shown in Figure 6, the limits of what is probable if the null hypothesis is true are the

points corresponding to .398 above and below the hypothesized population mean of

5.0. If our sample mean falls inside the critical limits (i.e., between 4.602 and 5.398),

we would conclude that the null hypothesis has a 95% probability of being true. Our

sample mean of 5.5 is beyond the critical limit—it lies in the shaded region on the

distribution that indicates what is “improbable” if the null hypothesis were true. We

can now accept the alternative hypothesis that patients are not, on average, neutral in

their attitudes toward IVF.

Test Statistics

In practice, researchers do not construct sampling distributions and draw critical re-

gions on them. Rather, they compute a test statistic, using an appropriate formula,

and then compare the value of the test statistic to a value in a table. The selection of

a test statistic is made on the basis of such factors as the nature of the hypothesis and

the level of measurement of the variables.

Here, we illustrate the process of hypothesis testing using the example of pa-

tients’ attitudes toward IVF, for which we would use the one-sample t test. For this

test statistic, the formula is as follows:

where � the sample mean

m� value of population mean for null hypothesis

SEM � the estimated standard error of the mean

We would then compare the obtained value of t resulting from this formula to

the values in Table 2 of Appendix: Theoretical Sampling Distribution Tables for the

designated significance level and degrees of freedom. If the absolute value of the

computed t statistic is greater than the tabled value, then the null hypothesis is re-

jected. In the example at hand, the computed value of t is as follows:

As indicated earlier, the tabled value of t for df � 99 and a� .05 is 1.99. Therefore,

since 2.50 is greater than 1.99, we reject the null hypothesis that the population mean

is 5.0.

TIP: Within SPSS, the one-sample t test can be performed by clicking on
Analyze ➜ Compare Means ➜ One Sample T Test.

STATISTICAL SIGNIFICANCE When researchers calculate a test statistic that is

beyond a tabled value, they say their results are statistically significant. It is
important to understand what this term means. The word significant in this context

should not be interpreted to mean important or useful or clinically relevant.

t �
5.5 � 5.0

0.2
� 2.50

X

t �
X � m

SEM
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In statistics, significant means that the results are probably not attributable to

chance (i.e., attributable to random fluctuations and sampling error), at a specified

probability level.

By convention, any probability value (p value) greater than .05 (e.g., .09) is

statistically nonsignificant. A nonsignificant result is one that could have been ob-

tained simply by chance, i.e., with p 
 .05. In other words, a nonsignificant result is

one that, on the relevant theoretical distribution, does not lie in the critical region for

rejecting the null hypothesis.

There is a definite prejudice in research circles for results that are statistically

significant. Researchers are often disappointed if their substantive predictions—

their research hypotheses—are not supported by the data. Moreover, journal

reviewers and editors are less likely to accept manuscripts when there are no statis-

tically significant results. This prejudice is not arbitrary: It reflects the fact that non-

significant results are ambiguous. Inferential statistics are designed to disconfirm

the null hypothesis, and so there is never justification for interpreting an accepted

null hypothesis as evidence of a lack of relationship among variables. Because of

the basic framework for hypothesis testing, researchers whose substantive hypothe-

ses are the null case (i.e., they hypothesize no relationship among variables) will

have difficulty making the required inferences with traditional inferential statistics.

While there is a strong preference for statistical significance, we caution that

significance does not necessarily mean that the results are important. Researchers

can reduce standard errors by increasing the size of their sample, and so with a large

enough sample, almost all findings are statistically significant. This does not always

mean that the findings have clinical value.

ONE-TAILED VERSUS TWO-TAILED TESTS In most situations, researchers use

what are called two-tailed tests. A two-tailed test is one that uses both tails of a sam-

pling distribution to determine the critical region for rejecting the null hypothesis.

For example, the critical region in Figure 6 is found in both tails of the sampling dis-

tribution—values above 5.398 and below 4.602. The area corresponding to 5% of the

probability distribution (for an a of .05) is comprised of 2.5% at the lower end and

2.5% at the upper end.

Sometimes, however, two-tailed tests are unnecessarily conservative. When

researchers have a strong basis for predicting a specific direction for the alternative

hypothesis, a one-tailed test may be appropriate. A one-tailed test is one in which

the critical region is in only one end of the distribution.

To illustrate, suppose that we had a firm basis for hypothesizing not only that

infertility patients’ attitudes toward IVF are not neutral, but also that they are posi-

tive. This is referred to as a directional hypothesis. Our hypotheses in this example

might be formally stated as follows:

H0: m� 5.0

H1: m
 5.0

Originally, we predicted simply that the population mean would not be neutral

(not equal to 5.0). This nondirectional hypothesis implies that we were prepared to

find mean ratings that reflected either negative attitudes or positive ones, and so we

needed to look at both tails of the sampling distribution. In a one-tailed test, the critical

region defining improbable values is entirely in one tail of the distribution—the tail

corresponding to the alternative hypothesis. Because the entire 5% of “improbable”

values is at one end with a one-tailed test, it is easier to reject the null hypothesis.
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Figure 7 illustrates this point with our example. With a two-tailed test, the mean

sample score had to exceed 5.398 to be statistically significant at the .05 level. With a

one-tailed test, the mean sample rating has to exceed only 5.332 to reject the null hy-

pothesis. This value represents the hypothesized mean (5.0), plus the standard error

(0.2) times the tabled value for a one-tailed test with a � .05 and df � 99. Column

two of Table 2 of Appendix: Theoretical Sampling Distribution Tables (i.e., the col-

umn headed by .10 for a two-tailed test and .05 for a one-tailed test) indicates that the

tabled t value is about 1.66. The critical limit is thus (5.0 � (0.2 � 1.66)) � 5.332.

Most researchers use two-tailed tests even when their research hypotheses are di-

rectional. In research reports, if researchers do not state that statistical tests were one-

tailed, then two-tailed tests can be assumed. This is a conservative approach that

reduces the risk of committing a Type I error. Yet, the result is also that the risk of a

Type II error increases, because one-tailed tests have more statistical power than two-

tailed tests. Thus, when theory or prior research evidence strongly suggests that

findings opposite to those in the directional hypothesis are virtually impossible, a one-

tailed test may be justified. For example, suppose we were to test the following null hy-

pothesis:

H0: Hand washing has no effect on bacteria counts.

In this situation, the alternative hypothesis is directional—i.e., that hand washing

reduces bacteria. It would make little sense to test the null hypothesis against the tail

of the distribution implying the possibility that hand washing increases bacteria.

The decision to use a one-tailed test should always be based on a solid founda-

tion of theory or prior evidence, and should be made before analyses are performed.

It is inappropriate to compute a test statistic and then decide, based on the result, that

a one-tailed test should be used.

ASSUMPTIONS The use of statistical tests always requires certain statistical as-

sumptions to be made. An assumption concerns characteristics of the population

that are accepted as true without proof.

Assumptions vary according to the test statistic being used. One assumption

that is common to virtually all statistical tests, however, is the assumption that study

participants were independently and randomly sampled from the population. In a
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FIGURE 7 Critical region for a one-tailed test: attitudes toward IVF example.
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random sample, every element in the population has an equal chance of being se-

lected. Random samples have a greater likelihood than nonrandom samples of being

representative of the population. Sampling errors can occur in random samples, but

such sampling errors are simply the result of chance factors. Samples that are not

selected by random procedures are likely to harbor systematic bias. When samples

are biased, findings from the sample cannot be generalized to the population.

In most nursing research—or, for that matter, in most research with humans, re-

gardless of discipline—samples are not randomly selected. In our hypothetical

example of 100 infertility patients, it is unlikely that we could have obtained our sam-

ple by selecting 100 patients at random from all infertility patients. More likely, we

would have obtained our sample from clients at a local infertility clinic. Even if we

defined our population very narrowly as all the patients at that one clinic, the chances

are pretty high that the sample would not be random. Some people, for example,

would refuse to participate in the study, and nonparticipation is rarely random.

Since the assumption of independent and random observations should be met for

the statistical test to be valid, what should researchers do? First, random sampling should

be used whenever feasible. Second, if random sampling is not possible, researchers should

consider what is reasonable to assume as the population. In essence, researchers need to

ask, “From what population can this group be assumed to be a reasonably random (repre-

sentative) sample?” Third, the interpretation of the findings from nonrandom samples

should be conservative and cautious. In deciding whether the results of the statistical infer-

ence can be generalized to the population, researchers should look for evidence of similar-

ities between sample characteristics and population characteristic. A final piece of advice

is to replicate studies—that is, to repeat the study with a new sample.

For the one-sample t test, it is assumed that the values on the focal variable are

independent of each other and normally distributed in the population. Fortunately,

statisticians have been able to demonstrate that in most situations the t test is robust
to violations of the normality assumption. By robust, we mean that the accuracy of

decisions (the frequency of making Type I and Type II errors) is not strongly dimin-

ished when the variable’s underlying distribution is not normal. Generally, small de-

viations from normality can be tolerated regardless of the size of the sample. Larger

deviations can be tolerated as the sample size increases. Thus, if a sample is small

(under 30 cases) and there is evidence that the distribution is bimodal or severely

skewed, a one-sample t test should not be used.

PARAMETRIC AND NONPARAMETRIC TESTS Statistical tests can be classified in

two broad groups. Most tests described in this text are parametric tests, which in-

volve estimating a parameter. The one-sample t test, a parametric test, involves esti-

mating the population mean. Parametric tests, in general, assume that dependent

variables are normally distributed in the population, and most parametric tests have

other assumptions as well. Parametric statistics are applied when the dependent vari-

able is measured on a level approximating an interval level or higher.

Nonparametric tests do not test hypotheses about population parameters. These

tests are sometimes called distribution-free tests because they require no assumption

about the shape of the distribution of variables in the population. There are nonparamet-

ric tests that are appropriate for all four levels of measurement, although nonparametric

tests are most often used when the variables are measured on a nominal or ordinal scale.

Nonparametric tests are generally easier computationally than parametric tests.

The use of parametric and nonparametric tests in controversial. Some people

argue that if the assumptions for a parametric test are not met, then a nonparametric

test should be selected. Parametric tests are generally robust to minor violations of
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the underlying assumptions, however, and so others argue that parametric tests are

usually appropriate when the violations are modest.

Since nonparametric tests are easier to compute and have less restrictive assump-

tions, why would researchers ever choose a parametric test? First, the ease of computa-

tion is not much of an issue now that most statistical analyses are done by computer.

Second, parametric tests are much more powerful. By powerful, we refer to the concept

of power discussed earlier: the likelihood of correctly rejecting a false null hypothesis.

With a given set of data, a parametric test has a higher probability of correctly rejecting

the null hypothesis than when a nonparametric test is applied to the same set of data.

It seems sensible to adopt a moderate position in this controversy. When devi-

ations from normality appear to be modest, and when the measures of the variables

are approximately interval level, it is probably safe to use a parametric test. When the

distribution of a variable is markedly skewed or multimodal, however—especially

if the sample is small—or if the variables cannot possibly be construed as interval

level, a nonparametric test may be preferable.

BETWEEN-SUBJECTS TESTS AND WITHIN-SUBJECTS TESTS Another distinction

in statistical tests concerns the type of comparisons being made. Hypothesis testing

involves making some type of comparison. In a one-sample t test, for example, we

compare a sample mean against a hypothesized population value. If the hypothesis

concerns the relationship between smoking and lung cancer, smokers would be com-

pared to nonsmokers with regard to lung cancer incidence.4

When the comparison involves different people, the statistical test must be a

between-subjects test (sometimes called a test for independent groups). For ex-

ample, when men are compared to women, a test for independent groups is required

because the people in the male group are not the same people as those in the female

group. As another example, if a researcher compared the effects of two therapies (re-

laxation therapy versus music therapy) on pain levels, and randomly assigned people

to either the relaxation group or the music group, a test for independent groups

would again be required because people in the relaxation group did not receive the

music therapy and vice versa.

Some research designs, however, involve a single group of people. For exam-

ple, the researcher in the example of the two pain therapies might expose half the partic-

ipants to the relaxation therapy first, followed by music therapy, while the other half

would get the therapies in the reverse order. In this crossover design, the comparison

of the two therapies is not independent, because the same people are in both groups.

Another example involves a design in which people are compared before and then

after some intervention to determine if there were changes. With such designs, the

appropriate statistical tests are within-subjects tests (sometimes called tests for
dependent groups).

Steps in Hypothesis Testing

Various statistical tests that are appropriate for particular research situations are

described in the following text. Each test has a computational formula and a table

corresponding to a relevant theoretical distribution. The overall process of 

4 The term comparison suggests an examination of group differences. But, in fact, whenever a researcher

tests a hypothesis about a relationship between variables, the analysis involves comparisons. For example,

when a researcher asks if there is a relationship between cholesterol levels and heart rate, this can be con-

ceptualized as asking whether people with high cholesterol levels have different heart rates than people

with low cholesterol levels. Correlational questions essentially involve comparisons of relative value on a

continuum.
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testing hypotheses, however, is basically the same, regardless of which test

is used.

When the test statistic is being calculated manually, the steps in hypothesis

testing are as follows:

1. Decide which test statistic to use The selection of an appropriate test

depends on several factors, including the type of comparison being made, the

number of groups being compared, the measurement level of the variables, and

the extent to which assumptions have been met.

2. Establish the level of significance The criterion for the decision rule regard-

ing rejection of the null hypothesis should be set before the analyses are under-

taken. The level of significance will usually be .05.

3. Determine whether to use a one-tailed or two-tailed test In most cases, a

two-tailed test will be appropriate. If there is a firm basis for hypothesizing the

direction of a relationship, a one-tailed test may be warranted.

4. Calculate the test statistic Using data collected for the research, the test

statistic is computed, using the formula associated with the selected statistical

test.

5. Determine the degrees of freedom Degrees of freedom (df) is a concept

used in statistical testing to indicate the number of components that are free to

vary about a parameter. This concept is difficult to grasp, but fortunately for-

mulas for determining degrees of freedom are easy. A simple illustration may

clarify what we mean by “free to vary about a parameter.” Suppose we knew

that the mean value of five numbers was 10.0. How many individual data val-

ues (Xs) would we need to know to have complete information about the

data? The answer is four (N � 1): Once we know the first four values, the

fifth value is fixed, given that the mean is 10.0. For example, if the first four

Xs were 8, 9, 10, and 11, the fifth number would not be free to vary: It would

have to be 12.

6. Compare the computed test statistic to a tabled value Each statistical test

has an associated theoretical distribution. Tables have been developed to indi-

cate probability levels for different test values in the distribution for different

degrees of freedom. Most tables are set up to show the critical limit of the test

statistic for the most commonly used significance levels—often .05, .01, and

.001. To use the tables, you must locate the appropriate a and df, and then find

the value of the critical limit. Then this tabled value is compared to the com-

puted statistic.

7. Decide to accept or reject the null hypothesis If the absolute value of the

computed statistic is greater than the tabled value, the null hypothesis can be

rejected and the result is said to be statistically significant, at the specified

probability level. If the computed statistic is smaller, then the null hypothesis

is retained and the results are nonsignificant.

TIP: The tables on the inside covers are designed to help you select the
right test, but there are many online resources with decision trees and
interactive guides to help as well. Examples include http://www
.microsiris.com/Statistical%20Decision%20Tree/ and http://www.users
.muohio.edu/houslemk/decision%20tree.htm.
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When a computer is used to perform the analyses, researchers still need to make

up-front decisions (steps 1 through 3). First, researchers must select the appropriate sta-

tistical test so that the correct instructions can be given to the computer. Next,

researchers should decide on a significance criterion and whether a one-tailed or 

two-tailed test is appropriate. The next three steps are then carried out by the computer:

The computer will calculate the test statistic, determine degrees of freedom, and specify

the actual probability that the null hypothesis is true. For example, the computer might

indicate that the probability is .018 that the mean pain ratings for a music therapy group

and a relaxation therapy group are the same. This means that fewer than two times out

of 100 (18 times out of 1000) would a group difference as large as that observed be

found simply as a result of chance; group differences in average pain levels have a high

probability of being real. The computed probability must then be compared to the

significance criterion. If a was set at .05, the result would be statistically significant

because .018 reflects an outcome that is even less probable than the criterion. If a was

set at .01, however, the result would be nonsignificant. Note, though, that computer-

generated probability levels are usually for two-tailed tests. If a one-tailed test is desired,

the probability value needs to be divided in half. In the present example, the p value

would be .009 for a one-tailed test (.018 � 2). Thus, the one-tailed test would pass the

significance criterion of .01, whereas a two-tailed test would not.

RESEARCH APPLICATIONS

This section discusses some of the research applications of statistics discussed in this

chapter, and how they are presented when they are reported in journal articles.

The Uses of Statistics

With CIs added to your statistical repertoire, you can now do more than clean your

data and describe your sample: You are on the road to answering research questions

and developing evidence for nursing practice. Here are a few specific uses of statis-

tics discussed in this chapter.

1. The SEM Sometimes the standard error of the mean is used descriptively—in

lieu of the standard deviation—to communicate information about variability.

That is, some researchers present information about means for key variables, and

then state the SEM rather than the SD. This does not happen very often in nursing

articles, but is not uncommon in medical journals. For example, Leung and col-

leagues (2007) studied surgical waiting times for patients with intraocular tumors,

and reported that the mean was 86.75 days, with an SEM of 9.44. Thus, when you

are interpreting research evidence from reports in other disciplines, you should

pay attention to whether means are reported with SD or SEM information.

2. Confidence intervals around descriptive statistics When researchers calcu-

late means, they do not routinely calculate CIs around those values. For example,

if researchers described the mean age of study participants as 38.4 years, they like-

ly would not state the CI around that mean, because age is not the central focus of

the study. Moreover, researchers seldom ask research questions that can be an-

swered with a mean value of an outcome for their entire sample. They are more

likely to be interested in differences in the mean values between two or more

groups, and they might report the CI around mean. Yet, there are circumstances in

which a key study objective is to ascertain a mean value, in which case reporting

the CI around that mean is an important tool for drawing conclusions about the

precision of the estimate of the population mean. For example, Missildine (2008)
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completed an interesting study of sleep and the sleep environment of older adults

in acute care settings. Her purpose was to document and describe such factors as

light and noise levels, sleep duration and efficiency, and so on. For all of these vari-

ables, she computed mean values (e.g., mean light levels were 6.14 lux). Given the

small sample size in this pilot study, she did not compute CIs around her means,

but it would be valuable to do so in a larger study. Risk indexes, by contrast, direct-

ly address many research questions, and are almost always reported with CI infor-

mation. Risk indexes are different than means because they inherently encompass

a comparison—they are indexes of bivariate relationships and involve the compar-

ison of two risk groups with regard to an outcome.

3. One-sample t test Our illustration of the one-sample t test, which involved

comparing mean ratings of IVF attitudes against a hypothetically neutral score

of 5.0, was clearly contrived. In reality, one-sample t tests are infrequently used

in nursing research, because researchers rarely have a specific value against

which to test the sample mean. One exception is when there are norms, which

are standards based on data from either a population or a large, representative

sample. We present an example of a study that used one-sample t tests at the

end of the chapter. Polit and Beck (2008) tested the hypothesis that females are

overrepresented in studies conducted by nurses—i.e., that the mean proportion

female in nursing studies is greater than a specific value, .50.

Presentations in Research Reports

Point estimates and CIs often can be reported in the text of a report. The following is an

example of a statement that could be made to report a CI: “The mean birthweight for

the infants whose mothers were addicted to heroin was 2,025 grams (95% CI � 2,010,

2,040).” This indicates that there is a 95% probability that the mean population birth-

weight for infants of heroin-addicted mothers lies between 2,010 and 2,040 grams.

Tables are convenient for displaying CIs for multiple means, percentages, or risk

indexes simultaneously. When a series of one-sample t tests have been performed, they

can also be presented in a table. The table that illustrates findings from Polit and

Beck’s (2008) study (Table 3) includes both CI and one-sample t-test information.

Confidence intervals—or, alternatively, SEMs around a mean—can also be

presented graphically. To illustrate, four group means and CI information are shown

in Figure 8, again using data from Polit and Beck’s study. The X axis designates a

group or subgroup variable (here, four different age groups for people participating

in nursing studies), and the Y axis designates values of the means—i.e., the mean

percentage female in nursing studies. This graph, created within SPSS (Graphs ➜
Legacy Dialogs ➜ Error Bars) uses squares to indicate the mean values, and error
bars or brackets around the means to designate the 95% CIs. In this instance, a graph

works well to highlight differences among the four age groups.

Tips on Preparing Tables with Information 
on Statistical Significance

In this section, we offer general guidance on presenting information about statistical

tests in tables.

• Tables that report results from tests of statistical significance vary in content

and organization. We can make a few general points here, however. In many

cases, tables have a column headed by the name of the test statistic. The entries

in the column are the values of the computed statistic. Table 3 illustrates this
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FIGURE 8 SPSS graph with means and 95% CI error bars: percentage female
in study samples, by participants’ age group.

TABLE 3 Example of Table with One-Sample t Tests and 95% CI Information: Mean Percentage Female 
in Nursing Studies by Selected Characteristics of the Study

Study Characteristic
N of

Studies
Mean Percentage

Female (SD) t p
95% CI, Mean

Percentage Female

Lower
Limit

Upper
Limit

Type of Study
Quantitative 175 73.2 (27.7) 11.06 �.001 69.0 77.3

Qualitative 74 79.1 (26.5) 9.46 �.001 73.0 85.2

Research Design, Quantitative

Experimental/quasi-experimental 39 75.6 (35.3) 6.33 �.001 67.4 83.8

Nonexperimental 142 73.2 (27.5) 10.07 �.001 68.7 77.8

Research Tradition, Qualitative

Grounded theory 12 80.8 (28.3) 3.78 .003 62.9 98.8
Phenomenologic 19 72.5 (33.2) 2.95 .009 56.5 88.5
Descriptive/no specific tradition 40 77.3 (24.6) 7.02 �.001 69.4 85.2

All studies 259 75.3 (27.2) 14.95 �.001 72.0 78.6

Based on data from Polit and Beck (2008).
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arrangement with some information from Polit and Beck’s (2008) study on

gender bias in nursing research. This study is described more fully in the next

section. The fourth column, headed “t,” has values of the t statistic for eight

separate one-sample t tests.

• When the number of cases on which the test statistic is based varies from one

variable to another, there is usually a column designating sample size or

degrees of freedom. In Table 3, N is shown in column 2. If N is the same

throughout a table, sample size or df can be shown in a footnote or in the table

title.

• When statistical tests have been performed, tables almost invariably present

probability information. Often, as in Table 3, there is a separate column for the

p values. Significant p values are sometimes displayed as being below the

commonly used cut-off values of .05, .01, and .001, as appropriate, or as NS
(nonsignificant). Now that most analyses are done by computer, however, it is

preferable to show actual probability values (American Psychological

Association, 2001), as in Table 3, column 5.

• An alternative to having a separate column for p values is to place asterisks

next to the value of the test statistic to designate probability levels. In most cases,

one asterisk is used to represent p � .05, two asterisk designates p � .01, and

three asterisks designate p � .001. (There should always be a key at the

bottom of the table explaining what the asterisks represent.) In Table 3, for ex-

ample, the entries under the t column could have been 11.06*** for the first

row (quantitative studies), and 3.78** for the fifth (grounded theory studies).

When this system is used, statistics with no associated asterisks are under-

Statistical Inference

Research Example

The following example describes a study by Polit and

Beck (2008) that involved one-sample t tests. We de-

scribe the study and also show SPSS computer printouts

(Figures 8 and 9).

Study: “Is there gender bias in nursing research?” (Polit &

Beck, 2008)

Study Purpose: The purpose of this study was to test

the hypothesis that females are disproportionately repre-

sented as participants in nursing studies. We also

examined whether bias toward female participants, if any,

was associated with characteristics of the researchers,

participants, or study methods.

Methods: Data were extracted from a consecutive sam-

ple of journal articles published in four leading nonspe-

cialty nursing research journals in 2005 and 2006. Each

article was coded with regard to characteristics of the

participants (e.g., predominant age group), the re-

searchers (e.g., sex of the lead author), nursing specialty

focus (e.g., oncology, pediatrics), and study methods

(e.g., quantitative versus qualitative). The primary out-

come variable for this study was the percentage of par-

ticipants in each study that was female.

Analysis: The primary analyses involved a series of one-

sample t tests that tested the hypothesis that the mean

percentage female across studies was not equal to 50.0.

(The null hypothesis was that the mean percentage is
50.0; i.e., that males and females are equally likely to

participate in nursing studies.) Figure 9 shows SPSS out-

put from the t test for the entire sample of studies. The

top panel shows the number of studies in the analysis (N
� 259), the mean percentage female across all studies

(75.28), the SD (27.21), and the SEM (1.69). The bottom

panel shows inferential statistics. At the top, we see that

the test value � 50. That is, the null hypothesis being

tested is that the mean percentage is 50, which would

presumably reflect a total absence of gender bias. Then,

reading from the left, we see that the value of t (with 258

df) is 14.953. For a two-tailed test, the probability of ob-

taining this result if the null hypothesis of a 50-50 male-

female split were true is .000 (Sig. [2-tailed]). This means

that the mean percentage of 75.3 would be obtained by

chance alone in fewer than one in 1,000 samples of nurs-

ing studies. SPSS truncates the probability when the ac-

tual value is less than .0005, so we do not know for sure

what the probability is—it could, for example, be .0004

or .000009. We do know, however, that a mean 
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T-Test
One-Sample Statistics

N Mean Std. Deviation Std. Error Mean

Percent female 259 75.27961 27.206805 1.690549

Test Value = 50

t df
Sig. (2-
tailed)

Mean 
Difference

95% Confidence Interval 
of the Difference

Lower Upper

Percent
female 

14.953 258 .000 25.279615 21.95058 28.60865

One-Sample Test

FIGURE 9 SPSS printout of a one-sample t test.

percentage of 75.3 is highly unlikely to merely reflect

sampling fluctuations. The next entry shows that the

mean difference between the obtained mean of 75.3 and

the hypothesized mean of 50.0 is 25.3. The far-right

entry shows that the 95% CI around this mean difference

is 21.95 and 28.61.

Results: On average, 75.3% of study participants were

female, and 38% of studies had all-female samples. The

bias favoring female participants was statistically signif-

icant and persistent. A significant bias was observed

regardless of methodological features, and regardless of

other participant characteristics, such as their age.

Table 3 presents some of the findings relating to study

methods. As this table shows, the mean percentage fe-

male far exceeded 50.0% regardless of whether the

study was quantitative or qualitative, experimental or

nonexperimental, or conducted within various qualita-

tive research traditions such as grounded theory or phe-

nomenology. All the t tests in the table were statistically

significant. Note that we reported the p levels in Table 3

as �.001, even though the SPSS output said that Sig. �
.000. The actual probability is not zero, but it is very low,

less than one in 1,000. Another thing to note is that this

table shows 95% CIs around the mean percentage, not

around the mean difference as shown on the computer

printout in Figure 9. Thus, the table tells us that for

the sample of studies as a whole, we can be 95% confi-

dent that the true mean lies somewhere between 72.0

and 78.6. The lower limit is well above 50.0, which is

consistent with the results of the one-sample t test.

Figure 8 shows graphic results for the mean percentage

female for four age groups of participants. This 

figure shows that, regardless of age group, the lower limit

of the 95% CI was greater than 50.0—although it was

close to 50.0 for children under age 19 (51.0). The figure

also suggests that nurse researchers were especially like-

ly to use predominantly female samples when their

study population was young adults. For studies involv-

ing participants in the 19- to 25-year-old age group—

there were 11 such studies—the mean percentage female

was 89.7.

TIP: You have perhaps noticed the overlap
between parameter estimation and hypothesis
testing in this example. The one-sample t test
and the 95% CIs provide consistent information
because both were based on the t distribution
and on means and SEMs calculated from the
study data. We can see in Table 3 that CIs
provide hypothesis-testing information as well
as parameter estimates. The lower limits of the
various 95% CIs were always higher than
50.0%, which corresponds to the null
hypothesis, and thus indicates that the null
hypothesis can be rejected. We think the two
approaches complement each other nicely. The
CIs provide useful information about the
precision of our estimates, but (because the
probability level was fixed at 95%), they do not
convey information about how improbable the
null hypothesis is. The p values associated with
the t tests tell us how totally improbable it is
that the true population parameter was 50.0%.
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Summary Points

• Researchers use inferential statistics to general-

ize from sample data to a broader population.

Researchers are not able to make inferences about

population values directly from sample data due to

sampling error, which reflects the tendency of

sample statistics to fluctuate from one sample to

another, simply by chance.

• Inferential statistics use theoretical sampling dis-
tributions and the laws of probability as a basis for

establishing “probable” and “improbable” research

outcomes.

• The sampling distribution of the mean is a

hypothetical distribution of the means of an

infinite number of samples of a given size from a

population.

• The standard deviation of a sampling distribution

of means is called the standard error of the
mean (SEM); it is an index of the average amount

of error in a sample mean as an estimate of the

population mean. The smaller the SEM, the more

accurate are the estimates.

• An estimated SEM can be calculated by dividing

the sample standard deviation by the square root

of N, i.e., sample size.

• Statistical inference encompasses two broad ap-

proaches: estimation procedures and hypothesis

testing. Estimation procedures are used to esti-

mate population parameters.

• Point estimation provides a single descriptive

value of a parameter (e.g., a mean, proportion, or

odds ratio).

• Interval estimation provides a range of values—a

confidence interval (CI)—between which the

population value is expected to fall, at a specified

probability level. Researchers establish the degree

of confidence that the population value lies within

this range. Most often the 95% CI is reported,

which indicates that there is a 95% probability that

the true population value lies between the upper

and lower confidence limits.

• Confidence intervals around a mean are calculated

by multiplying the sample SEM times a value

obtained from a theoretical distribution called the t
distribution, and then adding and subtracting that

value from the mean. A t distribution is similar to

a normal distribution, but has fatter tails when

sample size is small. When there is information

about the actual (not estimated) SEM, z scores and

the normal distribution can be used to calculate

CIs around a mean.

• CIs around a proportion or risk index involve

using a theoretical distribution called the binomial
distribution.

• Hypothesis testing, the alternative approach to

parameter estimation, begins with an assumption

that the null hypothesis is true. The null hypothe-
sis (H0) is typically a statement about the absence

of a relationship between variables, while the

research hypothesis (or alternative hypothesis,
H1) is the hypothesis researchers seek to support.

Based on a calculated test statistic that is compared

to values in a theoretical distribution, researchers

make decisions to accept or reject the null hypoth-

esis based on how “improbable” the calculated

statistic is.

• Because decision making is based on sample data,

there is always a possibility of error. When re-

searchers incorrectly reject a null hypothesis that

is true, a Type I error (false positive) is commit-

ted; when researchers incorrectly accept a false

null hypothesis, a Type II error (false negative) is

committed.

• Researchers establish a level of significance,

which is the probability of making a Type I error.

The two most commonly used levels of signifi-

cance (often symbolized as �) are .05 and .01.

With a equal to .05, the researcher accepts the risk

that in five samples out of 100 the null hypothesis

will be rejected when it is, in fact, true.

• The probability of committing a Type II error

(symbolized as �) is more difficult to control, but

large samples reduce the risk—that is, a large N
increases the power of the statistical test.

• Hypothesis testing involves several steps.

Researchers begin by selecting an appropriate

statistical test, based on such factors as the level

of measurement of the variables and the degree to

which the data are likely to support the

assumptions for a parametric test.

• A parametric test involves the estimation of a pa-

rameter, the use of data measured on an interval

scale or higher, and assumptions about the distri-

bution of the variables. A nonparametric test has

less restrictive assumptions, and is more likely to

be used when the key variables are nominal or

ordinal level.

105



Statistical Inference

• Researchers also decide whether a one-tailed test
(suitable for a directional hypothesis) is defensi-

ble, or whether a two-tailed test, which uses both

ends of the theoretical distribution to define the

critical region of “improbable” values, is more

appropriate.

• Once researchers make preliminary decisions, a test

statistic is calculated using sample data. After cal-

culating degrees of freedom (df), researchers then

consult the appropriate table. If the absolute value

of the test statistic is greater than the tabled value,

the result is statistically significant, at the speci-

fied level of probability. This means that the ob-

tained result is probably “real” and not likely to be

the result of chance factors. A nonsignificant result

is one in which deviations from the null hypothesis

are likely to have occurred simply by chance.

• One statistical test, the one-sample t test, is used

when the researcher tests the null hypothesis that

the sample mean is equal to a specified value.

Exercises

The following exercises cover concepts presented in this chap-

ter. Answers to Part A exercises that are indicated with a dag-

ger (†) are provided here. Exercises in Part B involve comput-

er analyses and answers and comments are offered on the 

Web site.

PART A EXERCISES

A1. What is the probability of drawing a spade from a normal,

shuffled deck of 52 cards? What is the probability of

drawing five spades in a row (i.e., the probability of getting

a flush in five-card poker)?

A2. Draw a histogram that graphs the probability of drawing

a spade, a club, a heart, or a diamond from a normal deck

of 52 cards. Shade in the area showing the probability of

drawing a red card.

A3. Given a normal distribution of scores with a mean of 100

and an SD of 10, compute z scores for the following

score values: 95, 115, 80, and 130.

A4. Based on Figure 2, which shows a normal distribution of

children’s heights with a mean of 60.0 and an SD of 5.0,

approximately what is the probability of randomly se-

lecting a child whose height is less than 50 inches?

A5. If a sampling distribution of the mean had an SEM equal

to 0.0, what would this suggest about the sample means

drawn from the population—and about the scores in the

population?

A6. Compute the mean, the standard deviation, and the esti-

mated standard error of the mean for the following sam-

ple data: 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, and 7.

A7. Population A and Population B both have a mean height

of 70.0 inches with an SD of 6.0. A random sample of 30

people is selected from Population A, and a random

sample of 50 people is selected from Population B.

Which sample mean will probably yield a more accurate

estimate of its population mean? Why?

A8. Suppose we obtained data on vein size after application

of a nitroglycerin ointment in a sample of 60 patients.

The mean vein size is found to be 7.8 mm with an SD of

2.5. Using the t distribution in Table 2 of Appendix:

Theoretical Sampling Distribution Tables (because in-

formation on the true SEM is not available), what are the

confidence limits for a 95% CI around the mean? What

are the confidence limits for a 99% CI?
A9. Suppose you wanted to test the hypothesis that the av-

erage speed on a highway—where the maximum legal

speed is 55 mph—is not equal to 55 mph (i.e., H0: m �
55; H1: m � 55). Speed guns are used to measure the

speed of 50 drivers, and the mean is found to be 57.0,

SD � 8.0. What is the calculated value of t for a one-

sample t test? With a � .05 for a two-tailed test, is the

sample mean of 57.0 significantly different from the

hypothesized mean of 55.0 (i.e., can the null hypothe-

sis be rejected)?

A10. For the problem in Question A9, would the obtained re-

sult be statistically significant with � .05 for a one-tailed

test (i.e., for H1: m 
 55)?

PART B EXERCISES

B1. For the exercises in this chapter, you will again be using the

SPSS dataset Polit2SetB. First, run a descriptive analysis for

the variable bmi, the body mass index for study participants.

Do this within Analyze ➜ Descriptive Statistics ➜
Descriptives. Move the variable bmi (variable #19) into the

variable list, then click the pushbutton for Options. Select

the following statistics: mean, standard deviation, mini-

mum, maximum, and standard error (S. E. mean). Then

click Continue and OK to run the analysis and answer the

following questions: (a) What is the mean body mass index

in this sample of low-income women? (b) What is the SD?
(c) What is the standard error of the mean? (d) Using the

SEM and values from the t distribution in Table 2 of

Appendix: Theoretical Sampling Distribution Tables, com-

pute the value of the 95% CI around the mean.  Now, what is

the value of the 99% CI around the mean for BMI?

B2. Now, have SPSS compute the same CIs around the mean of

bmi by using the Analyze ➜ Descriptive Statistics ➜
Explore procedure. In the opening dialog box, Insert the bmi
variable into the Dependent Variable list. Next, click

†

†

†

†

†

†

†

†

†

†

†
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“Statistics” at the bottom left, then click on the Statistics

pushbutton, where you can designate the desired confidence

level. The default is 95%. Run the analysis twice, once with

a 95% CI and another time for the 99% CI. How close were

your manual calculations to the computer-generated statis-

tics for the CIs?

B3. Within Explore, you can instruct the computer to compute

CIs around the means of a dependent variable for different

subgroups. Run Explore for the variable bmi again, but on

the opening dialog box, in the slot labeled “Factor List,”

enter the variable for the woman’s poverty status (poverty).

This will yield information about the mean BMIs of two

groups of women: those whose families were above pover-

ty, and those whose families were below poverty. Instruct

the computer to compute 95% CIs. Then answer the fol-

lowing questions: (a) What was the mean BMI for women

below poverty? (b) What was the mean BMI for women

above poverty? (c) What are the standard errors for the two

groups? Why do you think they are different? (d) What are

the 95% CIs around the mean BMI for the two groups of

women?

B4. Create a graph that presents the statistics from Exercise

B3. Click on Graphs ➜ Legacy Dialogs ➜ Error Bar. The

dialog box that pops up is set to a default for type of graph

(Simple) that you should run. Click the pushbutton Define.

In the next dialog box, move bmi into the slot for Variable

and poverty into the slot for Category axis. There are op-

tions for whether the graph uses error bars to show CIs
around the mean (which is the default, with a 95% CI), the

standard error of the mean, or standard deviations. Run

the procedure with both CIs and SEMs. For the run with

the SEM, designate a multiplier of 1—this will yield a

graph that shows the mean with error bars set at 1 SEM
around the mean. In which of the two graphs do the error

bars encompass a narrower range?

B5. This question was intentionally removed from this 

edition.

B6. Set up a table to display the results from Exercise B5,

using Table 3 as a model. Then write a few sentences sum-

marizing the results.

B7. Using the variable poverty as the row variable in a

Crosstabulation analysis, calculate RRs and ORs between

the women’s poverty status and four to five other dichoto-

mous outcomes of your choosing in the Polit2SetB

dataset. Create a table presenting the results, and write a

brief paragraph summarizing key findings. Be sure that

your table and your discussion include information 

about CIs.

†

†

†

†

Answers to Exercises

A1. The probability of drawing a spade (or a card of any particular suit): p � .25 (1 � 4 suits). The probability of drawing five

spades in a row: p � .0009765 (.255).

A3. The z scores for the four values � �0.5; �1.5; �2.0; �3.0

A4. The height is two SDs below the mean (z � �2.00), so p � .023 of randomly selecting a child whose height is lower than 50

inches tall.

A5. An SEM of 0.0 implies that all the sample means are equal to the population mean—there is no variability in any of the sam-

ple means as estimates of the population mean. This, in turn, implies the absence of variability of scores in the population, because

under any other circumstance sampling error would result in some sample means being different from the population mean.

A6. With these values, mean � 5.0, SD � 1.211, and SEM � 0.303.

A7. The estimate for Sample B will likely be more accurate than that for Sample A. Given that the two populations have the same

mean and SD, the SEM for Sample B will be smaller because the sample size is larger. Indeed, the estimated SEM for Sample A is

1.095 (6.0 � ), while that for sample B is .775 (6.0 � ).

A8. For the 95% CI, the confidence limits are 7.154 and 8.446. For the 99% CI, the confidence limits are wider: 6.941 and 8.659.

A9. The value of t � 1.768. According to Table A.2, the tabled value of t for α � .05 with df � 49 is about 2.01. Therefore, the re-

sult is not statistically significant (p 
 .05). We cannot reject the null hypothesis that the average speed was 55 mph with a two-

tailed test.

A10. The tabled value for a one-tailed test with α � .05 and df � 49 is about 1.68, so the obtained result (t � 1.768) is statistical-

ly significant at the .05 level.

160130
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GLOSSARY
Alternative hypothesis In hypothesis testing, a hypothesis different from the null hypothesis; often symbolized as H1; the alterna-

tive hypothesis is usually the actual research hypothesis.

Between-subjects test A statistical test that is appropriate for research designs in which separate (independent) groups of people

are being compared (e.g., men versus women); also called a test for independent groups.

Binomial distribution A probability distribution for a dichotomous variable.

Central limit theorem A statistical principle stipulating that (a) the larger the sample, the more closely the sampling distribution

of the mean will approximate a normal distribution; and (b) the mean of a sampling distribution is equal to the population mean.

Critical region The area in the sampling distribution representing values that are “improbable” if the null hypothesis is true.

Directional hypothesis A hypothesis that makes a specific prediction about the nature and direction of the relationship between

two variables.

Hypothesis testing The application of inferential statistics in which sampling distributions are used to make objective, probabilis-

tic decisions about the acceptance or rejection of null hypotheses.

Interval estimation A statistical estimation approach in which the researcher uses sample data to establish a range of values that

are likely, within a given level of confidence, to contain the true population parameter; the smaller the interval, the more precise the

estimate.

Laws of probability Established laws that stipulate the likelihood that a particular event or sequence of events will occur.

Level of significance The probability of making a Type I error, established by the researcher before the statistical analysis (e.g.,

the .05 level); symbolized as , alpha.

One-tailed test A test of statistical significance in which only values at one extreme (tail) of a distribution are considered in deter-

mining significance; used when the researcher has predicted the direction of a relationship (i.e., posits a directional hypothesis).

Point estimation A statistical estimation procedure in which the researcher uses information from a sample to estimate a single

statistic to best represent the value of the population parameter.

Power The probability of correctly rejecting a false null hypothesis; power equals 1 , the risk of a Type II error.

Random sample A sample selected in such a way that each member of the population has an equal probability of being included.

Robust A characteristic of a statistical test that results in appropriate statistical decision making even when underlying assump-

tions have been violated.

Sampling error The error in the estimate of a population parameter when the estimate is based on only a portion of the popula-

tion, i.e., a sample; the fluctuation of the value of a statistic from one sample from a population to another sample.

Test for independent groups The class of statistical tests used to compare independent groups, i.e., for between-subjects designs.

Test statistic A statistic computed to evaluate the statistical reliability of relationships between variables observed in a sample; the

sampling distributions of test statistics are known for circumstances in which the null hypothesis is true.

Two-tailed test A test of statistical significance in which values at both extremes (tails) of a distribution are considered in deter-

mining significance; used when the researcher has not predicted the direction of a relationship, but also the usual default in statis-

tical testing.

Type I error An error created by rejecting the null hypothesis when it is true (i.e., the researcher concludes that a relationship

exists when in fact it does not); a false positive result.
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Type II error An error created by accepting the null hypothesis when it is false (i.e., the researcher concludes that no relationship

exists when in fact it does); a false negative result.

p value In c, the probability that the obtained results are due to chance; the probability of committing a Type I error.

Alpha ( ) (1) In tests of statistical significance, the level designating the established risk of committing a Type I error; (2) an index

used to evaluate internal consistency reliability called Cronbach’s alpha or coefficient alpha.

Beta ( ) (1) In statistical testing, the probability of committing a Type II error; (2) in multiple regression, a standardized coeffi-

cient indicating the relative weight of a predictor variable expressed as a standardized z score in the regression equation.

Bimodal distribution A distribution of values with two peaks (high frequencies).

Confidence interval The range of values within which a population parameter is estimated to lie at a specified level of probabili-

ty; abbreviated CI.

Confidence level The estimated probability that a population parameter lies within a given confidence interval.

Confidence limits The upper and lower boundaries of a confidence interval.

Degrees of freedom (df) A concept used in tests of statistical significance, referring to the number of components that are free to

vary about a parameter (e.g., by knowing a sample mean, all but one value would be free to vary).

Dependent groups t test A statistical test for comparing group means when people in the groups being compared are the same

(e.g., a before-after comparison) or are paired (e.g., husbands and wives).

Dichotomous variable A variable having only two values or categories (e.g., gender).

Estimation procedures The procedures used in inferential statistics to estimate a population parameter on the basis of sample

data.

t distribution A family of theoretical probability distributions used in hypothesis testing, similar to the normal distribution in that

t distributions are unimodal, symmetrical, and bell shaped.

Sampling distribution A theoretical distribution of a statistic using an infinite number of samples as a basis and the values of the

statistic computed from these samples as the data points in the distribution.

Significance level The probability that an observed value or relationship could be the result of chance (i.e., the result of sampling

error); significance at the .05 level indicates the probability that the observed values would be found by chance only five times out

of 100.

Statistical inference The process of inferring attributes about the population based on information from a sample.

Statistical significance A term indicating that the results obtained in an analysis of sample data are unlikely to have been the re-

sult of chance, at some specified level of probability.

Statistical test An analytic procedure that allows a researcher to estimate the likelihood that obtained results from a sample reflect

true population values, according to the laws of probability.

Test for dependent groups The class of statistical tests used for within-subjects (or matched-subjects) designs.

Within-subjects test A type of statistical test used when a single group of people is compared under different conditions or at dif-

ferent points in time, or when related groups of people are compared; also called a test for dependent groups.

Default In statistical computer packages, the analysis automatically performed or the option automatically used, unless a specific

alternative request is made to override it.

Nondirectional hypothesis A research hypothesis that does not stipulate in advance the direction and nature of the relationship

between variables.

Nonsignificant result The result of a statistical test that indicates that the result could have occurred as a result of chance, given

the researcher’s level of significance; sometimes abbreviated as NS in research journals.

Null hypothesis (H0) The hypothesis that states there is no relationship between the variables under study; used in connection

with tests of statistical significance as the hypothesis to be rejected.

One-sample t test The test used to evaluate the probability that the value of the sample mean equals the researcher’s hypothesis

about the population mean.

Parametric statistics A class of inferential statistical tests that involves (a) assumptions about the distribution of the variables, 

(b) the estimation of a parameter, and usually (c) the use of interval or ratio measures.
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Probability distribution A frequency distribution that displays all possible outcomes of some event, together with each of their

probabilities; sometimes called a probability density function for continuous variables.

Random assignment The assignment of participants to treatment conditions in a random manner (i.e., in a manner determined by

chance alone); also known as randomization.

Research hypothesis A researcher’s prediction about variables being analyzed, typically regarding relationships between them.

Results The answers to research questions, obtained through an analysis of the collected data; in a quantitative study, the informa-

tion obtained through statistical tests.
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As you know, the one-sample t test allows researchers to test a specific hypothesized value for a population mean.

A more common situation is a researcher’s desire to draw inferences about the difference between two population

means. For example, a researcher might want to evaluate whether the mean body temperature of a population receiv-

ing a special treatment is different from the mean temperature of a control population not receiving the treatment,

based on data from a sample. Or, a researcher might want to compare the mean weight of a sample of diabetic

patients before and after an innovative weight-loss intervention, to draw conclusions about the effect of the innova-

tion in a population of diabetic patients. In these situations, the two-sample t test is an appropriate statistical test. 

BASIC CONCEPTS FOR THE TWO-SAMPLE t TEST

Suppose that we wished to evaluate whether drinking caffeinated coffee affects intraocular pressure (IOP) in

nonglaucomatous adults. Fifty people are randomly assigned to an experimental group that ingests 40 ounces of

caffeinated black coffee, whereas fifty people are randomly assigned to a control group that receives 40 ounces

of decaffeinated coffee. Thirty minutes later, the IOP of all 100 people is measured. The mean IOP of those in

the experimental group is found to be 15.5 mmHg, while the mean IOP of those in the control group is

13.5 mmHg. Can we conclude that the ingestion of caffeinated versus decaffeinated coffee (the nominal-level

independent variable) is related to IOP levels (the dependent variable)?

t Tests: Testing 
Two Mean Differences

Basic Concepts for the Two-Sample t Test
The Null and Alternative Hypotheses

Sampling Distribution of a Mean Difference

Assumptions and Requirements for the t Test

t Tests for Independent and Dependent Groups
Independent Groups t Test

Dependent Groups t Test

Other Statistical Issues for a Two-Sample Mean
Situation

Precision of Estimates: Confidence Intervals

Magnitude of Effects: Cohen’s d
Power Analysis

Research Applications of the Two-Sample t Test
The Uses of t Tests

The Presentation of t Tests in Research Reports

Research Example
Summary Points
Exercises
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As you know, a sample mean is seldom exactly the same as a population mean

because of sampling error. Thus, the two populations in question (a hypothetically

infinite number of ingestors of caffeinated coffee and a hypothetically infinite number

of ingestors of decaffeinated coffee) could have the same mean IOPs, even though the

sample means are different by 2.0 mmHg. A mere inspection of the sample means is

inadequate for reaching conclusions about the two populations.

The Null and Alternative Hypotheses

In our example, there are two possibilities—the ingestion of caffeinated coffee is

either related to IOP in adults, or it is not. The null hypothesis posits that there is no

relationship between caffeine and IOP. We can state the null hypothesis formally as:

where m1 � the population mean for Group 1 (those receiving caffeinated

coffee)

m2 � the population mean for Group 2 (those receiving decaffeinated

coffee)

The alternative hypothesis is that there is a relationship between the independent

and dependent variables—that is, that the two population means are not equal:

Note that the hypotheses are about the population parameters (m), not about

the statistics ( ). We are using sample data to infer what is true in the population. In

this example, the alternative hypothesis is nondirectional: It does not specify

whether m1 is expected to be greater than m2 or vice versa, and so we would use a

two-tailed test.

Our next task is to test whether the null hypothesis has a high probability of

being incorrect. By showing that the null hypothesis is improbable, we can infer that

the population means probably are not equal.

Sampling Distribution of a Mean Difference

A two-sample t test follows the same hypothesis-testing logic. A test statistic for this

situation is based on a theoretical sampling distribution called the sampling distribu-
tion of the difference between two means. This distribution allows researchers to con-

clude whether an observed difference between two sample means is “probable” or

“improbable,” given the null hypothesis.

A sampling distribution, as we have already seen, is a theoretical distribution

of an infinite number of sample values drawn from a population. This distribution is

based not on individual sample means, but rather on differences between the means

of samples drawn from two different populations. That is, the sampling distribution

plots the distribution of an infinite number of mean differences for samples of a

specified size, where mean differences are . In the example of the IOP, our 

mean difference value would be: 15.5 � 13.5 � 2.0.

X1 � X2

X

H1: m1 � m2

H0: m1 � m2

t Tests: Testing Two Mean Differences

If we measured the IOPs of a new sample of 50 people drinking caffeinated cof-

fee and 50 drinking decaf coffee, new means—and a new difference value—would be

obtained. If an infinite number of mean difference scores were computed and graphed
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in a frequency polygon, the result would be a sampling distribution of the difference

between two means. Just as the mean of a sampling distribution of the mean always

equals the population mean, so too the mean of a sampling distribution of the differ-
ence between two means always equals the difference between two population means.

By knowing the standard deviation of such a distribution, we can identify differences

that are in the tail and that are, therefore, improbable when the null hypothesis is true.

The standard deviation of such a sampling distribution is called the standard

error of the difference between two means or, more commonly, the standard error
of the difference, which we abbreviate as SED. The SED summarizes how much

sampling error occurs, on average, when a mean difference score is computed, for

samples of a given size.

Large standard errors of the difference make it difficult for researchers to re-

ject the null hypothesis, even when it is false. When the SED is small, by contrast, it

is easier to have confidence in a sample difference as an estimate of the population

difference. Similar to the standard error of the mean, the SED is influenced by two

factors: the size of the two samples (n1 and n2), and the variability of scores in the

populations. The standard error becomes smaller as the sample size increases and the

variability of scores in the populations decreases.

TIP: By convention, the symbol N is used to designate total sample
size and n is used to represent the size of a subgroup. In our example,
ncaffeinated � 50, ndecaffeinated � 50, and N � 100.

The t statistic for testing the difference between two sample means uses an

estimate of the SED in its formula, as we discuss in a subsequent section. Let us first

consider the underlying requirements for the two-sample t test.

Assumptions and Requirements for the t test

The t test for comparing group means is appropriate when the independent variable

is a dichotomous nominal-level variable indicating a person’s status in one of two

groups, and when the dependent variable approximates interval-scale characteristics

or higher. In our example about intraocular pressure, there were two groups—those

getting caffeinated coffee and those getting decaffeinated coffee—and a ratio-level

dependent variable, IOP measures.

Use of a t test is, strictly speaking, justified only if several assumptions are

met. First, participants are presumed to be randomly sampled. This assumption is

true of virtually all statistical tests, as previously discussed. Second, the dependent

variable is presumed to be normally distributed within each of the two populations.

The t test is fairly robust with regard to the assumption of normality when the sam-

ple size is large. Indeed, it has been found that t tests yield accurate results even with

severe departures from normality, if the number of cases in each group is greater

than 40 and group size is roughly comparable.

TIP: When doing a computer analysis, it is easy to test the assumption of
normality. Within SPSS, this can be accomplished within the Explore
procedure (within Descriptive Statistics). Two tests for normality can be
performed by selecting “Normality plots with tests” within the dialog box
for options under “Plots.”

t Tests: Testing Two Mean Differences
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A third assumption for t tests is the assumption of the homogeneity of
variance. That is, the following is assumed:

It is usually safe to ignore this assumption when sample sizes are approximately

equal. If the sample sizes are markedly dissimilar (e.g., if one group is more than

1.5 times greater than the second group) and if there is reason to suspect that the

population variances are unequal, the standard formula for the t test may produce

erroneous results. More specifically, the risk of a Type II error (incorrectly accepting

the null hypothesis) tends to be inflated when larger variation is associated with the

larger group size, and the risk of a Type I error (incorrectly rejecting the null hypoth-

esis) tends to be inflated when larger variation is associated with the smaller group

size (Zimmerman, 2001). As we will see later in this chapter, there is an alternative

formula that you can apply when you suspect that the assumption of homogeneous

variances has been violated.

TIP: When there is reason to suspect in advance that population variances
are unequal, it is advisable to design the study in such a way that the two
groups are of approximately equal size.

t TESTS FOR INDEPENDENT AND DEPENDENT GROUPS

A t test for comparing group means is appropriate in two types of situation. The

independent groups t test is used when the participants in the two groups are not

the same people, nor connected to one another in a systematic way. The independent

groups t test would be used in our example of the people randomly assigned to either

the caffeinated group or the decaffeinated coffee group. No one in the caffeinated

group received the decaffeinated coffee, and vice versa.

A different formula must be used when the people in the groups are not inde-

pendent. For example, when the weight of diabetics going through a weight reduction

program is measured before and after the intervention, the two groups are made up of

the same individuals, and so the two samples are not independent. In such a situation,

the dependent groups t test is required. In this section we present computational

formulas for both situations.

Independent Groups t Test

Suppose that we developed an intervention to reduce the distress of preschool chil-

dren who are about to undergo the fingerstick procedure for a hematocrit determi-

nation. Twenty children will be used to evaluate the effectiveness of the special

intervention, with 10 randomly assigned to an experimental (intervention) group

and 10 assigned to a control group that receives no special preparation. The dependent

variable is the child’s pulse rate just prior to the fingerstick. The hypotheses being

tested are as follows:

where m1 � the population mean for the experimental group

m2 � the population mean for the control group

H1: m1 � m2H0: m1 � m2

s2
1 � s2

2

t Tests: Testing Two Mean Differences
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To test these hypotheses, we compute a t statistic. In this example, we would

use the formula for the independent groups t test, because membership in the exper-

imental group is independent of membership in the control group. A simplified

formula for t is as follows:

The numerator is the difference in means between the two sample groups, and the

denominator is the estimated standard error of the difference. This formula is similar

to the formula for the one-sample t, where the numerator is the mean minus the

hypothesized population mean, and the denominator is the standard error of the

mean (SEM).

POOLED VARIANCE t TEST The standard error of the difference between means,

which we need to compute the t statistic, is estimated based on the variances of the

two samples. If we assume that the variances of the two populations of children (those

receiving and those not receiving the special intervention) are equal, we can compute

the t statistic using the pooled variance estimate of the SED in the denominator. The

basic (pooled variance) formula for the independent groups t test is as follows:

where � sample mean of Group 1

� sample mean of Group 2

� Variance of Group 1

� Variance of Group 2

n1 � number of cases in Group 1

n2 � number of cases in Group 2

Although this formula looks complex, it simply boils down to the computation

of means and variances for the two groups, and then plugging these values into the

equation along with information on the size of the groups.

Some data for our fictitious example about an intervention for the fingerstick

are shown in Table 1. According to this table, the mean pulse rate of the children in

the intervention group was 10.0 bpm lower than that of the children in the control

group (95.0 versus 105.0). Does this difference reflect real differences in the popula-

tions, or is it merely the result of random fluctuation? The t test will enable us to

draw a conclusion, at a specified probability level.

All components for the t test are shown at the bottom of Table 1. (The calcula-

tion of the variances—the squared SDs—is not shown in the table) According to the

calculation, the value of the t statistic is �1.85. To evaluate whether this is statisti-

cally significant (i.e., improbable if the null hypothesis is true), we need to compute

degrees of freedom. The df formula for the independent groups t test is as follows:

df � n1 � n2 � 2

Thus, in this example, df � (10 � 10 � 2) � 18. Assume that we set a� .05 for a two-

tailed test. Table 2 of Appendix: Theoretical Sampling Distribution Tables for the t
distribution indicates that the tabled value of t with df � 18 is 2.10. This tabled value

SD2
2

SD2
1

X2

X1

t �
X1 � X2

B c
1n 1 � 1 2SD 2

1 � 1n 2 � 1 2SD 2
2

n 1 � n 2 � 2
d c 1

n 1

�
1

n 2

d

t �
X�1 � X�2

SED

t Tests: Testing Two Mean Differences

118



t Tests: Testing Two Mean Differences

TABLE 1 Example of Calculation of Pooled Variance Independent 
Groups t Test

Experimental Group Pulse Rate in bpm
(Group 1) 

X1

Control Group Pulse Rate in bpm
(Group 2) 

X2

100 105
86 95

112 120
80 85

115 110
83 100
90 115
94 93
85 107

105 120

n1 � 10

SD2
1 � 154.46

X1 � 950 � 10 � 95.0

�X1 � 950

n2 � 10

SD2
2  � 138.67

X2 � 1050 � 10 � 105.0

�X2 � 1050

 t � �1.85

t �
95.0 � 105.0

B c
19 2154.46 � 19 2138.67

18
d c 1

10
�

1
10
d

�
�10.0
 5.41

t �
X1 � X2

B c
1n1 � 1 2SD2

1 � 1n2 � 1 2SD2
2

n1 � n2 � 2
d c 1

n1
�

1
n2
d

is greater than the absolute value of the calculated t statistic ( ), and so

we retain the null hypothesis that the two population means are equal. We cannot

conclude that the group difference of 10.0 bpm in the children’s pulse rates is attrib-

utable to the special intervention, given our decision rule.

Of course, we might have tested a different hypothesis, such as the following:

This alternative hypothesis is directional: It predicts not only that the two groups will

have unequal means, but that the mean pulse rate for the intervention group will be

lower than that for the control group. We do not expect that the intervention would

increase the preprocedure pulse rate of children, and so we may be justified in using a

one-tailed test. Returning to Table 2 of Appendix: Theoretical Sampling Distribution

Tables, we find that with a� .05 and df � 18, the tabled t value for a one-tailed test is

1.73. The absolute value of the calculated t statistic, 1.85, is greater than this tabled

value, and so the null hypothesis can be rejected. With a one-tailed test, the mean pulse

rate of the intervention group is significantly lower than that of the control group for a

� .05. This example provides an opportunity to re-emphasize the caveat that decisions

to use a one-tailed or a two-tailed test should be made before the t statistic is comput-

ed, not after its value is known.

H0: m1 � m2    H1: m1 6 m2

��1.85� � 1.85
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SEPARATE VARIANCE t TEST We were able to use the standard pooled variance

formula for the t test in this example because the sample sizes of the two groups were

identical. Moreover, we can see in Table 1 that the variances of the two groups were

reasonably similar (154.5 for the intervention group and 138.7 for the control

group). When the assumption of equal population variances is untenable and when

sample sizes are unequal, a different formula for the t statistic must be used. The

separate variance formula is

When analyses are done by computer, as they usually are, you usually do not

have to decide which of the two formulas to use, because (at least in SPSS) t is com-

puted using both of them. Moreover, SPSS automatically performs a test (called

Levene’s test for equality of variances) that helps you decide which test statistic to

report. Levene’s test calculates a statistic (called an F statistic) that tests the null

hypothesis that the two variances are equal (H0: s1 � s2). If this F statistic is signif-

icant, then this null hypothesis must be rejected, and the t from the separate variance

formula should be reported.

Figure 1 shows a computer printout for the present example, which we created in

SPSS using the Analyze ➜ Compare Means ➜ Independent Samples T Test com-

mands. The top panel shows basic descriptive information—the n, mean, SD, and the

SEM for the dependent variable, children’s pulse rate—for the experimental and the

control groups. In the bottom panel, reading from left to right, we see first that the F
for Levene’s test equals .134. This statistic is not significant (p � .719), and so we

t �
X1 � X2

B
SD 2

1

n 1

�
SD 2

2

n 2

t Tests: Testing Two Mean Differences

T -Test
Group Statistics

Group Status N Mean
Std.

Deviation
Std. Error

Mean

Child’s pulse rate Experimental group 10 95.00 12.428 3.930

Control group 10 105.00 11.776 3.724

Independent Samples Test

Levene’s Test 
for Equality of

Variances t-test for Equality of Means

F Sig. t df
Sig. (2-
tailed)

Mean
Difference

Std. Error
Difference

95% Confidence
Interval of the

Difference

Lower Upper

Child’s 
pulse 
rate

Equal variances
assumed

.134 .719 �1.847 18 .081 �10.000 5.414 �21.374 1.374

Equal variances
not assumed

�1.847 17.948 .081 �10.000 5.414 �21.377 1.377

FIGURE 1 Computer printout for independent groups t test: testing mean differences in children’s pulse rates.
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can accept the null hypothesis that the variances of the two groups are equal. In other

words, the variance of the experimental group (12.432) is not significantly different

from the variance of the control group (11.782).

The remainder of this panel shows the results of the t test, with the first row

presenting information on the pooled variance estimate (i.e., for the equal variance

assumption) and the second row showing information for the separate variance esti-

mate (for the unequal variance assumption). If the test for homogeneity of variance

had been statistically significant, the separate variance estimate would have been the

appropriate test. In the present case, the value of t is �1.85 for both estimates, and

the two-tailed significance (p) is .081. With a� .05 for a two-tailed test, this p value

is not statistically significant. For the one-tailed test, the printed value of p would

have to be halved: The one-tailed significance would be .0405, which is statistically

significant when a is .05. The next column shows that the estimated standard error of

the difference is 5.41. The final column shows the 95% confidence interval (CI) for

the population mean difference, with the limits of �21.37 and �1.37 for the equal

variance assumption. All of this information corresponds to the manual calculations

previously shown in Table 1 and in the text. Clearly, using the computer removed the

drudgery of performing the calculations.

We should also note that, because of the small sample size, we began the

analysis by testing the assumption that children’s pulse rates were normally distrib-

uted. One such test is called the Kolmogorov-Smirnov test, which can be performed

in SPSS through the Explore procedure. This test yielded a p � .20, which indicates

that departures of the distribution from normality are not statistically significant.

Example of an independent-groups t test:

Cho, Holditch-Davis, and Miles (2008) studied maternal depression among mothers

with medically at-risk infants. They used t tests to examine whether mothers’ scores on

a depression scale differed for those with male versus female infants, and for mothers

with infants in different risk groups (e.g., premature versus medically fragile).

Dependent Groups t Test

Sometimes an independent groups t test is inappropriate. One such situation occurs

when means are computed for the same group of people at two points in time (for ex-

ample, before and after an intervention). In this within-subjects design, the “groups”

are not independent: They comprise the same people. Sampling fluctuation is lower

in a within-subject design because the various attributes of individuals that affect

sampling variation (e.g., their health, age, motivation, and so on) have a similar

effect on both means. The t test for independent groups is, therefore, overly conser-

vative or insensitive for testing dependent group differences, since a major source of

inter-participant variation is controlled.

Other situations also require a dependent groups t test. When participants in

one group are paired to those in the second group on the basis of some attribute, the

dependent groups t test is appropriate. Here are some examples:

• Group 1 � husbands, Group 2 � their wives

• Group 1 � twin A, Group 2 � twin B

• Group 1 � mothers, Group 2 � their daughters

In another relevant situation, researchers sometimes deliberately pair-match

participants in one group with unrelated people in another group to enhance

group similarity. For instance, people with lung cancer might be pair matched to
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people without lung cancer on the basis of age and education, and then smoking

behaviors in the two groups might be compared. In all of these instances, the

selection of people in the second group is constrained by which people are in the

first group—their selection is not independent. These situations all call for a

dependent groups t test, which is sometimes called a paired t test or a correlated
groups t test.

To illustrate, suppose we wanted to compare direct and indirect methods of

blood pressure measurement in a sample of trauma patients. Blood pressure values

are obtained from 10 patients via both radial arterial catheter (direct) and the bell

component of the stethoscope (indirect). In this example, the hypotheses being tested

are as follows:

where m1 � the population mean for the direct method

m2 � the population mean for the indirect method

To test these hypotheses, we need to perform a dependent groups t test,

because the same people are in both groups. The formula for the t statistic for

dependent groups is as follows:

where � the mean difference between pairs of values

SD2
D � the variance of the difference

n � total number of pairs

In this formula, the in the numerator is the average difference between all pairs of

individual scores—i.e., the mean of all the ( )s. The expression in the denom-

inator is the estimate of the standard error of difference. The following equivalent

formula can be more readily used for actual calculations:

where D � difference scores between the pairs

n � total number of pairs

Again, although the formula looks complex, the components are not hard to com-

pute. The main calculation involves computing difference scores between all pairs,

and then either squaring each difference score and summing (�D2), or summing the

difference scores and then squaring ((�D)2).

Some systolic blood pressure (SBP) data for our fictitious example are pre-

sented in Table 2. As the calculations at the bottom of this table show, the mean sys-

tolic blood pressure of the 10 patients is 129.3 mmHg by the direct method and

128.0 mmHg by the indirect method. We can use the t test for dependent groups to

determine if the difference of 1.3 mmHg is statistically significant, or likely to reflect

sampling error.

t �
�D

B
1n�D2 2 � 1�D 2 2

n � 1

X1 � X2

XD

XD

t �
XD

B
SD2

D

n

H0: m1 � m2    H1: m1 � m2
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Table 2 shows that the calculated value of t is 1.90. For the dependent groups 

t test, the formula is as follows:

where n � total number of pairs

In this example, df � 9 and, with a� .05 for a two-tailed test, the tabled value of t is

2.26. The tabled value is larger than the computed value of t, and so our decision is

to accept the null hypothesis. Given our decision rule, we cannot conclude that the

mean for the direct blood pressure measurement is different from the mean for the

indirect method. Nor, however, can we conclude that the means are the same, be-

cause a Type II error might have occurred. Statistical testing is designed to test

whether the null hypothesis is probably false, but failure to reject the null does not

“prove” that the null is true, only that there is insufficient evidence to reject it.

Computer analysis for the dependent groups t test is straightforward. In SPSS,

we would use the commands Analyze ➜ Compare Means ➜ Paired-Samples T Test.

Figure 2 presents an SPSS printout for such a t test, using the fictitious data for the

direct and indirect blood pressure measurements for 10 people (Table 2). The top

panel (A) provides basic descriptive information for SBP values for the two mea-

surement methods, direct and indirect. Panel B indicates that the correlation between

the two sets of SBP measures was strong (r � .996). Panel C shows, reading from

df � n � 1

t Tests: Testing Two Mean Differences

TABLE 2 Example of the Calculation of Dependent Groups t Test

Direct SBP 
in mmHg 

X1

Indirect SBP 
in mmHg 

X2

Difference 
(X1 � X2)

D D2

130 128 2 4
102 100 2 4
154 155 �1 1

113 110 3 9
139 140 �1 1

125 120 5 25
156 155 1 1
108 105 3 9
161 160 1 1
105 107 �2 4

�X1 � 1293

X1 � 129.3

X1 � 1293>10

�X2 � 1280

X2 � 128.0

X2 � 1280>10

�D � 13

(�D)2 � 169

�D2 � 59

t � 1.90

t �
13

B
110 259 � 169

9

�
13

6.84

t �
�D

B
1n�D2 2 � 1�D 22

n � 1
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the left, that the mean paired group difference is 1.30, and that the standard error of

the difference is .68. The calculated value of t is 1.90, the same results that we

obtained through manual computation. The exact probability value for a two-tailed

test with 9 df is .090. Thus, as we concluded earlier, the difference in the two blood

pressure measurements is not statistically significant at the .05 level for a 

2-tailed test. There are 9 chances out of 100 that the observed differences in blood

pressure reflect random fluctuations, and not “real” differences between the two

methods of measurement.

Example of a dependent-groups t test:

Vadlamudi, Adams, Hogan, Wu, and Wahid (2008) used paired t tests to test

improvements in nurses’ attitudes and confidence levels relating to screening for

patient alcohol problems, following a 4-hour educational intervention.

OTHER STATISTICAL ISSUES 
FOR A TWO-SAMPLE MEAN SITUATION

Researchers can ask several questions about a relationship: Does it exist, what is its

nature, how strong is the relationship, and how precise are the estimates? When a

researcher compares means for two groups, the main question often concerns the

existence of a relationship. The researcher applies the t test to determine if the inde-

pendent variable (group status) is significantly related to the dependent variable (the

t Tests: Testing Two Mean Differences

T-Test

A Paired Samples Statistics

Paired Differences

Mean
Std.

Deviation
Std. Error

Mean

95% Confidence
Interval of the

Difference

t df
Sig. 

(2-tailed)Lower Upper

Pair 1 Direct method: SBP �
Indirect method: SBP

1.300 2.163 .684 �.247 2.847 1.901 9 .090

Mean N
Std. 

Deviation
Std. Error 

Mean

Pair 1 Direct method: SBP 129.30 10 22.351 7.068

Indirect method: SBP 128.00 10 23.017 7.279

N Correlation Sig.

Pair 1 Direct method: SBP & 
Indirect method: SBP

10 .996 .000

B Paired Samples Correlations

C Paired Samples Test

FIGURE 2 SPSS computer printout for dependent groups t test: testing direct versus indirect blood pressure measurement.
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variable for which the means are computed). The nature question is addressed by

seeing which mean is higher or lower than the other. This section examines other

related statistical issues.

Precision of Estimates: Confidence Intervals

As you know, CIs can be used to determine the probable range of values within

which the mean of a single population is expected to lie. Confidence intervals can

also be developed for the difference between two population means, and such CIs
provide useful information about the precision of the estimates of mean differences.

For the situation involving independent groups, the formula is as follows:

where � sample mean of Group 1

� sample mean of Group 2

t � tabled t value at a specified probability

SED � estimated standard error of the difference

m1 � population mean of Group 1

m2 � population mean of Group 2

Note that the t in the formula for the confidence limits is the tabled value, not

the computed value, of t. For the example of the children’s pulse rates in the experi-

mental versus control group, we calculated the SED to be 5.41 (Table 1). The tabled

value of t for a � .05 and a 95% CI is 2.10. We can now calculate the lower and

upper confidence limits for the 95% CI:

[(95.0 � 105.0) � (2.10)(5.41)] � �21.36 (lower limit)

[(95.0 � 105.0) � (2.10)(5.41)] � 1.36 (upper limit)

We can state with 95% confidence that the mean pulse rate of the experimental

population is between 21.36 bpm less and 1.36 bpm more than that of the control

population. (These are the same values as shown on the SPSS printout in Figure 1,

within rounding error.) Zero is within this CI, indicating the possibility that, for a

two-tailed test, m1 � m2. This is consistent with the fact that the null hypothesis was

not rejected for the two-tailed test.

Similar procedures are used to create CIs around mean differences in a dependent

group situation. Figure 2 shows that in our example of two methods of measuring

blood pressure, the 95% CI around the mean difference of 1.30 was �.25 and 2.85,

again encompassing the value of 0.00 and indicating nonsignificant differences.

Magnitude of Effects: Cohen’s d

Clinicians often need to know more than whether a relationship of an effect is

real—their decisions are often affected by how large the effect is. The magnitude of

a relationship in situations calling for independent groups t tests is most often com-

municated in the form of an effect size. Effect size is an extremely important con-

cept in the world of evidence-based practice because it provides a common metric

for summarizing evidence in meta-analyses. A meta-analysis is a systematic effort

to statistically integrate evidence from multiple studies addressing a particular

X2

X1

3 1X1 � X2 2 � 1t �  SED 2 4 	 m1 � m2 	 3 1X1 � X2 2 � 1t � SED 2 4
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research question. A fuller explanation of meta-analysis can be found in Polit and

Beck (2008).

An effect size is a measure of the strength of the relationship between vari-

ables in the population. It can be viewed as an index of how wrong the null hypoth-

esis is. Effect size and power are related: The higher the effect size, the greater the

power of the test. This simply means that when a relationship between two vari-

ables is strong in the population, sample data likely will reflect it. When a relation-

ship is weak, it is possible that the relationship will not be observed in a sample,

because of sampling error.

The population effect size in a two-group mean situation is estimated with a

statistic called Cohen’s d. (This index is sometimes called the standardized mean
difference (SMD) or the effect size for standardized means, ESSM). Cohen’s d is

easy to compute, using the following formula:

where � sample mean of Group 1

� sample mean of Group 2

SD � pooled standard deviation for both groups

The effect size expresses how far apart the two means are, in standard deviation

units, and is thus similar to a standard score. In our example of the pulse rates of children

in an intervention group compared to those in a control group, the pooled SD is 12.85

(calculations not shown). We can thus compute the estimated effect size:

In SD units, the estimated magnitude of the intervention’s effect on children’s

pulse rates was more than three fourths of a standard deviation. Cohen (1988) has des-

ignated some benchmarks to qualitatively describe the absolute value of effect sizes.

According to Cohen’s criteria, an effect size of .20 in a two-group mean-difference sit-

uation is considered small, .50 is medium, and .80 is large. Thus, the estimated effect

size in our present example, which is nearly .8 SD units, is substantial. And yet, recall

that group differences were nonsignificant for a two-tailed test—which illustrates the

importance of considering both effect size and probability levels in interpreting results.

You can perhaps see that by using standard deviation units, effect sizes can

be compared or combined across studies—even when the raw data values were not

measured on the same scale. For example, in trying to assess whether cognitive–

behavioral interventions to reduce fatigue and insomnia among patients with

breast cancer are effective, different researchers might use different measures of

fatigue. By computing an effect size for the separate studies and converting infor-

mation to SD units, the study results can be aggregated and averaged, and this is

exactly what occurs in a meta-analysis.

Power Analysis

In addition to meta-analysis, researchers use effect size information in other ways.

An especially important application is called power analysis, which is often done

during the planning phase of a study. Power analysis helps researchers make in-

formed decisions about how large their samples should be to minimize the risk of a

d �
95.0 � 105.0

12.85
� �.78

X2

X1

d �
X1 � X2

SD
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Type II error. As noted earlier, effect size is related to the power of a statistical test, and

the probability of committing a Type II error (
) is the complement of power (1 � 
).

In our examples in this chapter, we used small samples so that computations would not

be laborious. In actual studies, however, the use of small samples is risky. The

likelihood of a Type II error (incorrectly accepting a false null hypothesis) is large

when the number of cases is small, because a major determinant of a standard error

is sample size.

Power analyses involve four components, three of which must be known or es-

timated to solve for the fourth:

1. The significance criterion

2. Power

3. The population effect size

4. Sample size

The significance criterion (a) is typically .05. Just as .05 is a standard criterion

for a Type I error, scientists consider .20 as the standard for a Type II error (i.e., a

minimum power of .80). Thus, when using power analysis to solve for N (the

estimated number of participants required in a study), the third component needed is

an effect size estimate. This estimate might be an effect size derived from similar

earlier research or from a pilot study.

Suppose, for example, that the data shown in Table 1 were from a pilot study

for a larger test of an intervention for children undergoing a fingerstick. In such a

situation, we would have all three components for performing a power analysis: a

� .05, power � .80, and the absolute value of the pilot study effect size � .78. We

can estimate sample size needs in this situation by consulting a power table, using

special power software, or using one of the many free interactive power analysis

calculators on the Internet. 

If this were a real situation, it would be imprudent to design the full-scale

study with only 27 children per group. Because of sampling fluctuations, our effect

size value could be overestimated. Children in the pilot study had pulse rates that dif-

fered, on average, by 10.0 bpm, but the 95% CI around the difference was very large,

ranging from �21.37 to �1.37. The latter value would occur if the control group,

not the experimental group, had lower pulse rates. In fact, using the CI information

for the means, we could calculate a 95% CI for effect sizes. We can be 95% confi-

dent that the true population effect size ranges from �1.66 (which corresponds to the

mean difference of �21.37, divided by the pooled SD of 12.85) to �. 11 (correspon-

ding to a mean difference of �1.37 divided by the pooled SD). Given this CI, it

would be totally plausible that the true population effect size was as low as �.10 (for

example), in which case a sample of 1,576 children per group would be needed to

achieve the desired power.

In a real-life situation with results such as these, it would be sensible to pur-

sue some alternatives. For example, the effect size estimates based on pilot data

could be compared to estimates from other similar studies in the literature, which
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perhaps could be used to modify sample size projections accordingly. Another op-

tion would be to estimate what minimum effect size might be needed to achieve

clinical importance or cost-effectiveness. Finally, it is probably wise to anticipate

that a new intervention being tested against “usual care” rarely will have greater

than a small-to-moderate effect, which (using Cohen’s guidelines) would mean an

effect size in the vicinity of .35. Given the pilot data, an effect size of .35 is plausi-

ble, and is neither overly conservative nor overly liberal. This would result in

estimating sample size needs at 129 children per group. Although Cohen’s guide-

lines (sometimes disdainfully referred to as “tee-shirt size” effect estimates)

should be used only as a last resort when there is little actual evidence about effect

size, they can be useful as a kind of “reality check.” In most research, large effects

are rare.

TIP: When using power analysis to estimate sample size needs, remember
to build in a cushion for attrition. In most studies, not everyone who
agrees to participate actually does so, and participants may withdraw
before the end of the study. Also, be aware that maximum power is
achieved when sample sizes in the two groups are equal. When you
deliberately plan a study with different group sizes (e.g., to allocate more
people to an intervention you believe will be beneficial), sample sizes
should be estimated using an online power calculator or specialized
power software, which allows you to stipulate allocation ratios for
the two groups. (Here is one Web site for a free power calculator: 
http://www.dssresearch.com/toolkit/spcalc/power_a2.asp).

Post hoc power analysis is sometimes done to interpret results and to consider

“next steps,” particularly when results are nonsignificant. For example, suppose we

tested an intervention that had an effect size of .45 with 50 participants per group,

but group differences were not significant. Such a study was almost certainly under-

powered. For a two-tailed test with a � 05, estimated power is roughly .60. This

indicates a risk of a Type II error of about 40%. In other words, four times out of 10,

an effect size as large as .45 with a total sample of 100 people would have resulted in

the retention of the null hypothesis, even when it was false. It would not in such a

case be advisable to conclude that the experimental intervention was ineffective. The

safest conclusion is that the experimental intervention should be tested again with a

larger sample of participants. 

RESEARCH APPLICATIONS OF THE TWO-SAMPLE t TEST

This section discusses some of the major applications of t tests and related statistics,

and reviews methods of effectively presenting the information in a research report.

The Uses of t Tests

Many of the outcome variables of interest to nurse researchers are measured on a

ratio scale or on a scale that approximates interval characteristics. For example, the

majority of biophysiologic measures are ratio-level variables (e.g., blood pressure,

heart rate, vital capacity), and most measures of psychosocial phenomena are treated
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as interval-level variables (e.g., scales of depression, stress, social support). Thus,

because the comparison of two group means is common, there are many research sit-

uations in which the t test is an analytic option. Some of the major applications of 

t tests are described here.

1. Answering research questions Key study hypotheses can often be tested

using t tests. Examples of two-group comparisons include comparing experi-

mental versus control groups, vaginal versus cesarean deliveries, normotensive

versus hypertensive patients, men versus women, and smokers versus non-

smokers. T tests are versatile because, as this list suggests, the groups can be

experimentally created or can be existing groups, and the groups can be differ-

ent or related people.

2. Testing for selection bias It is often important to investigate the extent to which

groups being compared are similar with regard to confounding variables
that are extraneous to the research question. For example, if we were comparing

breastfeeding intentions among women who had a vaginal versus a cesarean

delivery, it would be important to know whether the two groups were similar with

regard to other factors that might affect feeding decisions (e.g., education,

employment, and so on). When the groups being compared are dissimilar on

characteristics that are related to the dependent variable, selection bias can con-

found the results. Researchers often test for such biases to assess the internal
validity of their studies. The t test can be used to test the significance of mean dif-

ferences on key background characteristics of two comparison groups. This is a

good strategy, even when people have been randomly assigned to groups. As an

actual research example, Chang, Wung, and Crogan (2008) tested the effective-

ness of a self-care enhancement intervention for elderly nursing home residents in

Taiwan on activities of daily living (ADL) performance. The researchers used 

t tests to assess the preintervention comparability of the experimental and control

group members with regard to such background characteristics as age, number of

health problems, perceived health status, and ADL performance at baseline.

3. Testing for other biases Selection bias is a pervasive problem in scientific

research, but other biases are also important and can often be analyzed using 

t tests. For example, in studies that involve the collection of data at several points

in time, the researcher often tests for attrition bias—that is, the nonrandom loss

of participants from the study over time. A test for attrition bias involves compar-

ing the characteristics of people who remained in the study with those of people

who did not, often using a t test. Another example is a test for nonresponse bias.
Suppose that 100 patients were asked to participate in a study but only 70 agreed

to do so. To examine whether nonresponse was systematically related to patients’

characteristics (i.e., whether those who participated were a biased subset of all

those who were invited), a t test could be used to compare the background charac-

teristics of the two groups. Another bias that can occur when study data are

collected over an extended time period is a cohort bias—that is, systematic dif-

ferences between those who entered a study early and those who entered later. To

test for such biases, the researcher can divide the sample in half based on time of

enrollment, and then perform a t test that compares the characteristics of the two

cohorts.

4. Validity assessments When an instrument is being developed to measure an

abstract construct, researchers usually want to evaluate whether the instrument

is really measuring what it is supposed to be measuring—that is, whether

the instrument has construct validity. One approach to construct validation is

the known-groups technique, which is a method of examining whether a

measure discriminates between groups that are expected to be different with
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regard to the underlying construct. As an actual example, Shin, Kim, Kim,

Chee, and Im (2008) assessed the reliability and validity of two widely used

measures of pain for Asian-American patients. For the two scales, independent

groups t tests were computed to compare mean pain scores for patients who

were or were not taking pain medication. For both pain scales, scores were sig-

nificantly higher among patients who took pain medication. In this situation,

statistically significant differences provided one piece of evidence regarding

the instruments’ validity in this population.

5. Variable selection for multivariate analyses Researchers sometimes

develop models to predict outcomes using multiple independent (predictor)

variables. For example, we may wish to know which of many different pos-

sible variables best predicts scores on a health-related self-efficacy scale.

Researchers usually undertake preliminary bivariate analyses for each pos-

sible predictor. For example, if sex was a possible predictor, a t test might

be used to compare self-efficacy scores for men and women, to assess

whether to include sex in the multivariate analyses.

The Presentation of t Tests in Research Reports

Researchers often have to decide whether to include hypothesis-testing information

(e.g., values of t and p levels), CI information, or effect size information in their re-

ports. In nursing journals, the norm has been to report hypothesis-testing informa-

tion only, but that situation is changing as a result of the emphasis on evidence-based

practice. We begin this section by discussing how to report t tests.

When there are only one or two t tests to report, it is more efficient to present

the results in the text of the report rather than in a table. However, tables are extremely

efficient when two groups are compared in terms of multiple outcome variables

(or multiple background characteristics, if the table is summarizing tests for bias).

By convention, researchers communicate four pieces of information when

reporting the results of statistical tests: (1) the name of the test statistic; (2) the value

of the computed statistic; (3) degrees of freedom; and (4) the probability level. The

value of the statistic is usually presented to two decimal places (e.g., t � 1.54).

Degrees of freedom are either referenced directly (e.g., df � 99) or are indicated in

parentheses just before the value of the test statistic (e.g., t (99) � 1.54). It is usual-

ly unnecessary to specify that the pooled variance formula was used, since this is the

standard formula. If the separate variance estimate was used because the homogene-

ity of variance assumption was untenable, this should be noted.

In our example about the fictitious intervention to reduce distress among chil-

dren undergoing a fingerstick, we might report the results of the two-tailed test as

follows: “A two-tailed t test for independent groups was used to test for differences

in pulse rates among children in the experimental and control groups. The t test

revealed that the mean preprocedure pulse rate of children in the experimental group

(M � 95.0) was not significantly different from that of children in the control group

(M � 105.0), t (18) � �1.85, p � .08.”

TIP: Statistical symbols, like t and df, should be italicized for publication
in journals using the publication style of the American Psychological
Association (APA, 2001).
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t Tests: Testing Two Mean Differences

We encourage you to report more than hypothesis-testing results when you

have run t tests. As we saw with the example of an intervention for children undergo-

ing the fingerstick, the t test, effect size estimates, and CIs provided useful comple-

mentary information. Because of space constraints in journals, it may not be possible

to include information about all three, but it is judicious to consider supplementing

hypothesis testing information with information about precision or magnitude of

effects—or omitting hypothesis-testing results altogether if CI values are reported.

Given the importance of meta-analysis to EBP, even if you never intend to do one

yourself, we think it is a good idea to compute and report effect sizes so that future

meta-analysts can combine your findings with those of other similar studies. The

Publication Manual of the American Psychological Association (2001) explicitly rec-

ommends the inclusion of effect size estimates in reports: “For the reader to fully under-

stand the importance of your findings, it is almost always necessary to include some

index of effect size or strength of the relationship in your Results section” (p. 25).

If t-test results are reported in tables, the tables can be constructed to commu-

nicate both t test and effect size (or CI) information, as well as descriptive informa-

tion for the two groups. An example from an actual study, which we discuss in the

next section, is shown in Table 3. In this table we added effect size estimates, which

we computed ourselves, to a table adapted from the report (Wetta-Hall, 2007). In this

table, there are four different dependent variables, listed in the first column. For each

outcome, the table presents the means and SDs for the two groups, followed by the

value of the computed t statistic, df, and the associated p-level. Values for d are

shown in the far-right column.

TIP: Journal editors often have preferences about which type of statistics
to report, so you should look at journal guidelines or recently published
articles in evaluating the type of statistical information to include. Some
journals lean toward hypothesis-testing information, while others require
CI information.

If hypothesis-testing results are nonsignificant and a post-hoc power analysis

has been performed, the results are often reported in the Discussion section of the

TABLE 3 Example of Table with Dependent Groups t Tests and Effect Sizes:
Key Outcomes Before and After a Community Case Management Intervention

Outcome

Pre-
Intervention
Mean (SD)

Post-
Interventiona

Mean (SD) t df p db

Number of ED visits 6.1 (5.8) 4.3 (5.5) 6.24 486 <.001 .32

Physical health status (SF-8) 35.5 (9.5) 41.3 (9.6) �6.83 164 <.001 .61

Mental health status (SF-8) 41.8 (11.1) 43.4 (10.3) �1.90 164 .059 .15

Health locus of control (internal) 26.0 (6.1) 26.1 (6.4) �1.37 157 .18 .02

Adapted and revised from Wetta-Hall (2007), Table 2.

a Postintervention data were collected 6 months after disenrollment for the outcome Number of ED visits, and 3 months after disenrollment for

all other outcomes.
b Values of the effect size, Cohen’s d, are shown as absolute values and indicate postintervention improvements.
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report rather than in the Results section, because the primary goal of such an analy-

sis is to facilitate interpretation. In our fingerstick example, the following might

be included in the Discussion section of a report, assuming the two-tailed test had

been used:

Example:

Although the two groups did not have significantly different preprocedure pulse

rates, it is possible that our small sample size provided an inadequate test of the

effectiveness of the intervention. The effect size was large (d � .78), but statistical

power was low (less than .60), indicating a high risk of a Type II error. We recom-

mend that the study be replicated with a larger sample of children, given the incon-

clusiveness of our results and the potentially promising effect size.

Examples of t tests abound in nursing research journals.

Below is an example of an interesting study in which de-

pendent groups t tests were used.

Study: “Impact of a collaborative community case man-

agement program on a low-income uninsured population

in Sedgwick County, KS” (Wetta-Hall, 2007).

Study Purpose: The purpose of this study was to evalu-

ate the effects of a collaborative nursing/social work

case management intervention for low-income, unin-

sured residents in Sedgwick County in the state of

Kansas, near Wichita. The goal of the intervention was

to help bridge healthcare gaps for a vulnerable popula-

tion, by helping patients navigate the healthcare system

and find a permanent provider.

Methods: The study design was a one-group pretest–

posttest design with a sample of people who received

case management services. Data were collected prior to

the intervention and then again after disenrollment. Data

on one key outcome variable, number of emergency de-

partment (ED) visits, were obtained from hospital infor-

mation systems. Other outcomes were measured using

self-report scales administered by the case managers at

baseline and 3 months after program disenrollment.

Physical and mental health status was measured using

subscales from the SF-8, an abbreviated version of the

SF-36 Health Survey. Health locus of control was mea-

sured with the Multidimensional Health Locus of

Control Scale. There were a total of 492 program partic-

ipants, but self-report follow-up data were available for

only about one third of the original sample.

Analysis: The primary analyses involved dependent-

groups t tests that compared participants’ outcomes

before and after the case management. To help contextu-

alize her findings, Wetta-Hall also compared partici-

pants’ outcomes against national norms for several

outcomes. (She did not, unfortunately, report results of

analyses comparing characteristics of people for whom

postintervention outcome data were or were not avail-

able; such attrition bias analyses would have involved

independent groups t tests.)

Results: Wetta-Hall reported that, compared to adults

nationally, program participants were far less physically

and mentally healthy. Figure 1 of her report presented a

visually arresting chart that showed means and 95% CIs
for scores on the two SF-8 subscales as compared to

national norms. Table 3 shows selected results from the t
tests that compared pre- and postintervention outcomes

for program participants. Participation in the program

was associated with significantly fewer ED visits and

significantly better scores on the physical health status

measure. The effect size for the latter (d � .61) was size-

able. (We can readily see the utility of information on d
in this table. The effect size for health status was sub-

stantially larger than that for ED visits, even though

these two outcomes had similar significance levels.)

Program participation was not associated with signifi-

cant gains on the mental health subscale—but the effect

size of .15 suggests the possibility that there were mod-

est improvements that could not be detected with an N of

165. Changes to scores on the health locus of control

scale were negligible.

Research Example
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• The two-sample t test is used to make inferences

about the equality of two population means, based

on two sample means. The basic null and alterna-

tive hypotheses being tested are H0: m1 � m2 and

H0: m1 � m2.

• The t test is used when there are two levels of a

nominal-level independent variable (e.g., experi-

mental versus control), and when the dependent

variable is measured on an interval or ratio scale.

• A t test assumes that participants are randomly

sampled, that the dependent variable is normally

distributed, and that there is homogeneity of vari-
ances of the two populations—i.e., that variability

in the two populations is comparable. The last

assumption is robust to violation when the two

sample sizes are similar. Tests such as the

Kolmogorov-Smirnov test can be used to test for

normality of the distribution of outcomes.

• The basic formula for computing the t statistic has

the differences between the two sample means in

the numerator and the estimated standard error
of the difference in the denominator.

• Computationally, there are different t-test formulas

for different situations. When people in the two

groups are independently sampled and are not

connected to one another in any way, the

independent groups t test is appropriate.

• When the assumption of homogeneity of variances

is valid in an independent groups t test, the pooled
variance estimate is used to estimate the standard

error of the difference.

• When the variances are not equal and sample sizes

are dissimilar, a separate variance estimate
should be used.

• A third formula is used for the dependent groups
t test, which is appropriate when the participants

in the two groups are the same people or are paired

(e.g., husbands in Group 1 and wives in Group 2).

• In all three cases, the computed value of t is

compared to a tabled value to determine if the group

means are significantly different from one another—

i.e., if the computed value lies in the critical region

of the corresponding t distribution.

• In a t-test situation, confidence intervals can be

calculated around the difference between the two

group means, to indicate the precision of estimates

of mean differences.

• The magnitude of the effect of an independent

variable on an outcome variable is most often

shown as an effect size, which is an index of “how

wrong” the null hypothesis is. Effect size indexes

are often used in a meta-analysis, which is a

method for statistically integrating results from

many studies on a given research question.

• Population effect sizes in a two-group mean differ-

ence situation are estimated via Cohen’s d, which

is equal to the difference in sample means divided

by the pooled SD. The d statistic is sometimes

called the standardized mean difference (SMD).
• Power analysis is a procedure that capitalizes on the

relationship between effect size and the power of a

statistical test (1 � 
) to reject the null hypothesis

when it is really false. The four components in a

power analysis are the significance criterion (a), the

power criterion, effect size, and sample size. By con-

vention, an acceptable risk for a Type II error is .20,

(i.e., power should be at least .80).

• Researchers often use power analysis before a

study is undertaken to estimate the size of sample

they need to minimize the risk of a Type II error. In

such situations, they must estimate effect size to

solve for sample size.

• Researchers sometimes do a post-hoc power

analysis to help with interpreting results, particu-

larly when results are nonsignificant. In this situa-

tion, they solve for power, because sample size

and effect size values are known.

• Researchers use t tests for directly addressing

research questions that involve the comparison of

two-group means. A t test can also be used in 

two-group situations to test for selection bias, at-
trition bias, nonresponse bias, and cohort bias,

and in some situations to assess the construct
validity of an instrument via the known-groups
technique.

Summary Points
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Exercises

The following exercises cover concepts presented in this chap-

ter. Answers to Part A exercises that are indicated with a dag-

ger (†) are provided here. Exercises in Part B involve comput-

er analyses and answers and comments are offered on the Web

site.

PART A EXERCISES

A1. For which of the following situations is the independent

groups t test appropriate (if inappropriate, indicate why)?

(a) The independent variable (IV) is a type of stimula-

tion for premature infants (auditory versus visual ver-

sus tactile); the dependent variable (DV) is cardiac

responsiveness.

(b) The IV is parental role within couples (mother versus

father); the DV is degree of bonding with the infant.

(c) The IV is infant birthweight (low birthweight versus

normal birthweight); the DV is number of days absent

from school in first grade.

(d) The IV is sex (men versus women); the DV is com-

pliance versus noncompliance with a medication

regimen.

(e) The IV is radiation treatments (before versus after

treatment); the DV is cancer patients’ perceived self-

efficacy.

A2. For which of the following situations is the dependent

groups t test appropriate (if inappropriate, indicate why)?

(a) The independent variable (IV) is presence or absence

of conversation directed to comatose patients; the de-

pendent variable (DV) is the patients’ intracranial

pressure.

(b) The IV is role (patient versus the patient’s nurse); the

DV is perceived functional ability of the patient

48 hours after surgery.

(c) The IV is time since incarceration (1 month versus

3 months versus 6 months); the DV is body weight.

(d) The IV is age group (teenagers versus young adults);

the DV is attitudes toward condom use.

(e) The IV is nap therapy for narcoleptics (before versus

after treatment); the DV is unplanned naps the follow-

ing week (had an unplanned nap versus did not have

an unplanned nap).

A3. Suppose we wanted to test the hypothesis that a control

group of cancer patients (Group 1) would report higher

mean pain ratings than an experimental group receiving

special massage treatments (Group 2). Using the following

information, compute a t statistic for independent groups:

What are the degrees of freedom and the value of t? Using

a� .05 for a two-tailed test, is this t statistically significant?

X2 � 72.1 SD2
2 � 39.7 n 2 � 25

X1 � 78.5 SD2
1 � 42.1 n 1 � 25

A4. Write one or two sentences that could be used to report the

results obtained for the t test in question A3.

A5. For question A3, assume that the pooled SD for the two

groups is 7.05. Calculate the value of d. Given the result,

approximately what was the power of the statistical test—

and conversely, approximately what is the probability of a

Type II error (
)?

A6. For each of the following t values, indicate whether the t is

statistically significant for a two-tailed test, at the specified

alpha:

(a) t � 2.40, df � 25, a � .01

(b) t � 2.40, df � 25, a � .05

(c) t � 5.52, df � 10, a � .01

(d) t � 2.02, df � 150, a � .05

A7. State the critical (tabled) value of t that would be used to

reject the null hypothesis of equality of population means,

for an independent groups t test under each of the follow-

ing conditions:

(a) H1: m1 � m2; n1 � 20, n2 � 20; a � .05

(b) H1: m1 � m2; n1 � 30, n2 � 30; a � .01

(c) H1: m1 � m2; n1 � 10, n2 � 10; a � .01

(d) H1: m1 � m2; n1 � 60, n2 � 60; a � .05

(e) H1: m1 � m2; n1 � 15, n2 � 10; a � .01

A8. For a post hoc power analysis, assume that d � .60, a �
.05 for a two-tailed t test, and the number of people in each

of two groups � 30. What was the approximate power of

the t test, and what was the risk of a Type II error? For the

same effect size (.60), approximately what n per group

would be needed to achieve power � .80?

A9. The following are data for subcutaneous oxygen tension

(PSCO2, measured in mmHg) 12 hours after the start of

two protocols, administered to the same 10 healthy sub-

jects in random order—a bed rest protocol and a high

activity protocol:

Subject Bed Rest High Activity

1 67 63
2 68 62
3 70 69
4 66 64
5 68 67
6 62 60
7 71 66
8 65 65
9 67 63

10 65 62

Compute the t statistic for dependent groups and the df
for these data. Using a � .05 for a two-tailed test, is this

t statistically significant?

A10. Suppose we wanted to test whether the number of hours

in labor was different for women in their 20s and women

†

†

†

†

†

†

†

†

†
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in their 30s. Here is the basic information needed to

compute t:

Which formula for computing t (pooled variance estimate

versus separate variance estimate) should probably be

used? Why? Compute the value of t and df, using the appro-

priate formula, and indicate whether the group difference is

statistically significant for a� .05 for a two-tailed test.

PART B EXERCISES

B1. For these exercises, you will be using the SPSS dataset

Polit2SetC, which contains a number of mental health

variables. Most of our analyses involving t tests will in-

volve the variable cesd, which are the women’s scores on a

20-item scale called the Center for Epidemiologic

Studies—Depression Scale (CES-D). The CES-D, a widely

used measure of depressive symptoms, is a scale that asks

questions related to mood and functioning in the prior

week. Scores can range from 0 (no depression) to 60 (high

levels of depressive symptoms). Let us begin by first ex-

amining whether, in this sample of low-income women,

scores on the CES-D are normally distributed. Click on

Analyze ➜ Descriptive Statistics ➜ Explore. Move the

variable cesd (Variable #35) into the Dependent List.

(There are a lot of variables that begin with “cesd”—the

one you want is immediately after the variable cesd20.) At

the bottom of the dialog box, check “Both”—i.e., both sta-

tistics and plots. Then click the pushbutton for Plots. Click

the option in the middle of the dialog box for “Normality

plots with tests” and unclick the Stem-and-Leaf plot op-

tion. Then click Continue and OK to run the analysis.

Then answer the following questions: (a) What is the range

for CES-D scores in this sample of low-income women?

(b) What are the mean, SD, and SEM for the CES-D

scores? (c) What is the 95% CI around the mean? (d) What

is the value of the test statistic and significance level for

the Kolgomorov-Smirnov test? What does this mean?

(e) Do you think CES-D scores in this dataset can be used

as the dependent variable in t tests? Why or why not?

B2. Suppose we wanted to test the hypothesis that the

employment status of these disadvantaged women

(i.e., whether they were working or not working at the time

of the interview) was related to their level of depression.

(a) Formally state the null and alternative hypothesis for

this situation. (b) Would a dependent or independent t test

be appropriate? Why? (c) Did you state a directional or

nondirectional hypothesis? What does this imply about a

one-tailed versus two-tailed test?

B3. Now run a t test to test the hypothesis, using the commands

Analyze ➜ Compare Means ➜ Independent Samples T

Test. Move the variable cesd into the slot for Test

Variable(s). Then move the variable worknow into the slot

for Grouping Variable. To run this analysis, you must

X2 � 13.2 SD2
2 � 15.21 n 2 � 50

X1 � 12.5 SD2
1 � 4.41  n 1 � 20

know how the group variable is coded. For worknow, a

code of 0 indicates that the woman was not working, and a

code of 1 was used to code those who were employed.

Click the “Define Groups” pushbutton and on the next dia-

log box enter 0 for Group 1 and 1 for Group 2. Then click

Continue. Click the “Options” pushbutton and make sure

that the computer will compute a 95% CI. Then click

Continue and OK to run the analysis, and answer these

questions: (a) How many women were employed versus

not employed in this sample? (b) What are the mean 

CES-D scores for employed and non-employed women?

(c) What is the value of the F statistic for Levene’s test,

and what is the level of significance? What does this

mean? (d) Which formula for t is appropriate in this

situation—the pooled variance or separate variance for-

mula? Why? (e) What is the value of t for the appropriate

test? What is the level of significance, and what does this

mean? (f) If you had used the other formula, would you

have arrived at different conclusions? (g) What is the 95%

CI? What does this mean?

B4. Using information about the pooled standard deviation for

the cesd variable from the output in Exercise 1 (or from a

separate “Descriptives” analysis for the cesd variable),

compute the value of d, indicating the effect of being non-

employed on levels of depression in this population. Then

do a post-hoc power analysis. Approximately how much

power did we have in this analysis, with a � .05.

Conversely, approximately what was the risk of a Type II

error?

B5. Almost all of the data in the three datasets included are

from interviews conducted with adult women in 2001, in

the second wave of a longitudinal study. We have, howev-

er, included CES-D scores based on data collected in the

Wave I interview for a small subsample of these women.

This variable is called cesdwav1 in the Polit2SetC dataset.

We included this variable so that you could use a depend-

ent groups t test to test the null hypothesis that depression

scores did not change over the 2-year interval. You can do

this through the Analyze ➜ Compare Means ➜ Paired-

Sample T Test commands. In the opening dialog box, click

on the cesdwav1 and cesd variables (in that order), which

will be inserted as Variable 1 and Variable 2 on the Paired

Variables list. Click the Options pushbutton to make sure

that the computer will compute a 95% CI. Then click

Continue and OK to run the analysis. Then answer these

questions: (a) What are the mean 

CES-D scores for Wave 1 and Wave 2? (b) How many

people in this dataset had CES-D scores in both interview

waves? (c) What is the mean difference in the paired

scores, and what is the 95% CI around that mean differ-

ence? (d) What is the value of t? Is this t statistically sig-

nificant? What is the p value? (e) What is the correlation

between the Wave 1 and Wave 2 scores for this subsample

of women? What does this correlation coefficient mean?

B6. Run independent groups t tests for three outcomes in

the Polit2SetC dataset: cesd and the two subscale score

†

†

†

†

†

†
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variables for the SF-12 scale. In these t tests, you will be

testing the null hypotheses that women who do not have a

high school education have the same scores on these three

health outcomes as women who have a diploma or GED

certificate. The relevant variable for the group comparison

is educatn. This is a four-category variable in which code 1

represents no high school credential, and code 2 represents

a diploma or GED. (Codes 3 and 4, corresponding to

Associates and Bachelor’s degrees, will be ignored in this

analysis. Only 34 women in the sample had either of these

degrees.) In the Independent-Samples T Test in SPSS, in-

sert the three outcome variables in the list of Test

Variables, and educatn as the Grouping Variable. For

defining the grouping variable, enter code 1 for Group 1

and 2 for Group 2. When you have run these analyses, cre-

ate a table to present your results, using Table 3 as a

model. Be sure to include effect size information, which

you will need to compute manually. Then write a para-

graph summarizing the results.

Answers to Exercises

A1. a. inappropriate—there are three groups, not two;

b. inappropriate—the dependent groups t test should be used because the parents are paired;

c. appropriate;

d. inappropriate—the DV is measured on the nominal scale;

e. inappropriate—the dependent groups t test should be used because it is the same people in both groups.

A2. a. appropriate, assuming the same people are used in both conversation conditions;

b. appropriate;

c. inappropriate—there are three time periods, not two;

d. inappropriate—the groups are independent (unless the data were collected longitudinally from the same people);

e. inappropriate—the DV is measured on the nominal scale.

A3. t � 3.54, df � 48, statistically significant at α � .05

A5. d � .91, power is about .89, β � .11

A6. a. no; b. yes; c. yes; d. yes

A7. a. about 2.02; b. about 2.39; c. 2.88;

d. about 1.66; e. 2.81

A8. Power is approximately .61 and the risk of a Type II error is therefore about .39. To achieve the standard power criterion (.80),

the sample should have 44 participants per group, assuming the effect size estimate is accurate.

A9. t � 4.58, df � 9, statistically significant at α � .05 (tabled t � 2.26)

A10. Based on differences in sample size and variances, the separate variance estimate should be used; t � �0.97; with df � 68

this is nonsignificant at α � .05 for a two-tailed test.
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GLOSSARY
Attrition bias The bias resulting from the loss of participants during the course of a study, which can alter the composition of the

sample initially drawn.

Construct validity The degree to which an instrument truly measures the construct under consideration.

Effect size A statistical expression of the magnitude of the relationship between two variables, or the magnitude of the difference

between groups on an attribute of interest.

Internal validity The degree to which it can be inferred that an observed outcome was caused by a treatment or independent vari-

able, rather than by uncontrolled extraneous factors.

Known-groups technique A technique for assessing the construct validity of an instrument through a test of whether the instru-

ment differentiates groups expected to differ on the construct, based on a theory or prior research evidence.

Kolmogorov-Smirnov test A statistical test that evaluates the null hypothesis that a distribution of values in the population is nor-

mal.

Levene’s test for equality of variances A statistical test that tests the null hypothesis that the variances of groups being compared

are equal in the population.
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Meta-analysis A method of statistically integrating effect size indexes from multiple studies addressing the same or highly simi-

lar research question; a preeminent tool in evaluating evidence for evidence-based practice.

Power analysis A procedure for estimating either (1) the sample size needed to minimize the risk of a Type II error; or (2) the

power of a statistical test or, conversely, the likelihood of committing a Type II error.

Selection bias A threat to the internal validity of the study resulting from preexisting differences between the groups being com-

pared.

n The symbol used to designate the number of participants in a subgroup or in a cell of a study (e.g., “each of the four groups had

an n of 125, for a total N of 500”).

N The symbol used to designate the total number of people in a study (e.g., “the total N was 500”).

Cohen’s d The effect size index that summarizes the magnitude of differences between two group means, expressed in pooled

standard deviation units; sometimes called the standardized mean difference or SMD.

Confounding variable An extraneous variable that confounds the relationship between the independent and dependent variables

and that should ideally be controlled either in the research design or through statistical procedures.

Homogeneity of variance assumption The assumption in several statistical tests that the variance of the groups being compared

is equal in the populations.

Independent groups t test A statistical test for comparing group means when people in the groups being compared are not the

same and are independent (e.g., men versus women).

t test A parametric statistical test, most often used for analyzing the difference between two means (the two-sample t test).

Separate variance estimate In t tests, an alternative formula for estimating the standard error of the difference; used if the

assumption of homogeneous variances is untenable or if sample sizes in the two groups are markedly unequal.

Paired t test A statistical test for comparing group means when people in the groups being compared are the same (e.g., before-

after comparisons) or are paired (e.g., husbands and wives).

Pooled variance estimate In t tests, the standard formula for estimating the standard error of the difference; used if the assump-

tion of homogeneous variances is tenable or if sample sizes in the two groups are approximately equal.
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T tests can be used in many situations, but they are not appropriate when the means of three or more groups are

compared, or when the means for a group are compared at multiple points in time in a single analysis. In these

and several other research situations, a technique known as analysis of variance (often abbreviated ANOVA) is

used to draw inferences about differences among population means.

BASIC CONCEPTS FOR ANOVA

Suppose we were studying the effects of body position on cardiovascular responses during the Valsalva maneu-

ver. One hundred healthy adults are randomly assigned to four position groups: Group 1, lying flat on back;

Group 2, sitting partially upright at a 45-degree angle; Group 3, lying on right side with legs slightly bent; and

Group 4, sitting in a chair at a 90-degree angle. Blood pressure is measured during the strain phase of the

maneuver. Suppose we found the following mean systolic blood pressure (SBP) readings for the four groups:

• Group 1: 124.8 mmHg

• Group 2: 119.6 mmHg

• Group 3: 130.8 mmHg

• Group 4: 125.4 mmHg
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Assumptions and Requirements for ANOVA
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Research Reports
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From Chapter 7 of Statistics and Data Analysis for Nursing Research, Second Edition. Denise F. Polit. Copyright © 2010 by

Pearson Education, Inc. All rights reserved.
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Our research question is whether the observed group differences in SBP (the

dependent variable) represent true effects of body position (the independent variable)

in the four populations (a hypothetically infinite number of people in the different

body positions), or whether the mean sample differences reflect random fluctuations.

We cannot answer this question by merely looking at the means. The group means

are different from one another, but such differences might have occurred by chance.

A t test is not suitable because there are more than two groups. In such a situation,

analysis of variance is appropriate.

The Null and Alternative Hypotheses

The null hypothesis for ANOVA is similar to that for t tests: It posits the absence of

a relationship between the independent and dependent variables. In other words,

the null hypothesis is that the population means are equal. Stated formally, the null

hypothesis for the example at hand is as follows:

H0: m1 � m2 � m3 � m4

where m1 � the population mean for Group 1 (those lying flat on back)

m2 � the population mean for Group 2 (those sitting partially upright

at a 45-degree angle)

m3 � the population mean for Group 3 (those lying on side)

m4 � the population mean for Group 4 (those sitting in a chair at 

a 90-degree angle)

The basic alternative hypothesis is as follows:

H1: not H0

The alternative hypothesis simply states that H0 is not true. There are many

alternative ways in which the null hypothesis might be false. For example, it might

be that only m1 � m2, or that m3 � m4, or that all four population means are unequal.

The alternative hypothesis does not distinguish among the various possibilities. It

asserts that a relationship exists between the independent and dependent variables

such that the population means are not all equal.

In an ANOVA situation, the null hypothesis is tested using procedures that are

similar in principle, which involves using sample data to compute a test statistic. The

statistic is treated as a “score” in a sampling distribution that assumes the null hy-

pothesis is true. If the statistic falls within the rejection region of the sampling distri-

bution (i.e., if the “score” is improbable for a true null hypothesis), then we reject the

null hypothesis and infer that the group means are not equal.

Assumptions and Requirements for ANOVA

Like the t test, analysis of variance is appropriate when the dependent variable

is measured on an interval or ratio scale, and when the independent variable is a

nominal-level variable—or, an ordinal-level variable with a small number of levels,

such as very low birthweight, low birthweight, or normal birthweight infants.

The assumptions for using ANOVA are also similar to those for the t test. First,

it is assumed that the groups being compared were randomly sampled. Second, the de-

pendent variable is assumed to be normally distributed in the populations. Third, the

populations from which the groups are drawn are assumed to have equal variances, an

assumption that allows variability from each group to be pooled into a single estimate
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of population variance. ANOVA is robust with regard to these last two assump-

tions. ANOVA tends to yield accurate results even if the population distributions

depart from normality, especially if the number of cases in a group is fairly large

(at least 20 per group) and group sizes are about equal. ANOVA also yields accu-

rate results if the population variances are not homogeneous, provided that the

population variance for one group is no more than three times the variance for the

other, especially if the number of groups being compared is small and sample sizes

are about equal.

One further assumption is relevant for between-subjects designs: It is assumed

that the people in the groups have been independently sampled. In other words, for a

simple analysis of variance it is assumed that the participants in the groups are not

the same people, nor matched with individuals who are in the other groups. If the

same people are exposed to three or more different conditions, or measured at three or

more points in time, a repeated measures analysis of variance (analogous to the

dependent groups t test) can be used.

Given the similarities between the t test and ANOVA, you may wonder why

researchers do not simply use a series of t tests. For instance, in our example of body

positions, we could use a t test to compare Group 1 with Group 2, Group 2 with

Group 3, and so on. One problem with this approach is that it is tedious. A total of

six separate t statistics would have to be computed with four groups (10 would be re-

quired with five groups, and 15 would be needed with six groups). More important-

ly, the risk of a Type I error would increase: The more statistical tests you perform,

the more likely it is that some will be significant simply by chance. When the level

of significance is .05, there is a one-in-twenty chance that one t test will yield a sig-

nificant result even when the null hypothesis is true. If we performed six t tests to

compare all possible pairs of the four body position groups, the probability of com-

mitting a Type I error is much greater than the desired .05 (in fact, the probability

would be .18). Thus, multiple t tests should not be used to compare group means

when there are more than two groups.

General Logic and Terminology of ANOVA

Computationally, an analysis of variance is more complex than a t test, but the

underlying logic of ANOVA is not very difficult. It involves analyzing and sorting

out differences in scores (i.e., variability) among people in the sample.

To illustrate this process, suppose we randomly assigned 15 myocardial infarction

(MI) patients to a music therapy group (Group 1), a relaxation therapy group (Group 2),

or a control group (Group 3). The patients’ stress levels are then measured to evaluate

whether the interventions were effective in reducing stress. Stress scores can range from

0 (no stress) to 10 (extreme stress). Some fictitious data are shown in Table 1.

We can see that there is considerable variation: Scores cover the full range

from 0 to 10. There is variation both within the groups (for example, in Group 1

scores range from 0 to 6) and between the groups (group means range from 2.0 to

7.0). In analysis of variance, between-group variance (differences between

groups) is contrasted to within-group variance (differences between people in the

groups). When the null hypothesis is true, between-group variation is about the

same as within-group variation, because all variation stems simply from random

fluctuations. But when the groups are systematically different from one another,

between-group variation tends to be large, relative to variation within the groups.

The larger the between-group variance is in comparison to the within-group vari-

ance, the greater the likelihood that the samples do not come from populations

with equal means.
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TABLE 1 Stress Scores in Three Groups: Example of Within-Group 
and Between-Group Variation

Group 1 
Music Therapy

Group 2 
Relaxation Therapy

Group 3 
Controls

0 1 5
6 4 6
2 3 10 Within-group variation
4 2 8
3 0 6

Σ X � 15 10 35

X1 � 3.0 X2 � 2.0 X3 � 7.0 Grand Mean 1XG 2 � 4.0

Between-group variation

Within-group and between-group variation are the two sources that contribute

to total variation in a distribution of scores. We can illustrate the concept of

partitioning variance into source components more clearly with a concrete exam-

ple for one patient. Consider the score of the first person in Group 1, whose stress

score (0) deviates from the mean of Group 1 ( 1 � 3.0) by 3.0 points (within-group

variation). The Group 1 mean (3.0) deviates from the overall sample grand mean
( G � 4.0) by 1.0 point (between group variation). The first patient’s score (0) deviates

from the grand mean of 4.0 (total variation) by 4.0 points. In other words, for this

patient, the following calculation applies:

Within group variation � 3.0

Between group variation � 1.0

Total variation � 4.0

When deviations such as these are obtained for everyone in the sample, we can

put the information together to construct a ratio of aggregate between-group varia-

tion to within-group variation. The value of this ratio—referred to as the F ratio1—

is the sample statistic that is tested in ANOVA. In other words:

If group means are all equal, there is no between-group variability, which would

lead to acceptance of the null hypothesis. But if the mean group scores are different,

the question is whether differences are sufficiently large to justify the conclusion

that the population means are different. When group means in a sample are different,

the differences can be attributable to either (1) sampling error or (2) the effect of the

independent variable. Thus, we can also portray the F ratio as follows:

F �
Effect of independent variable � Sampling error

Sampling error

F �
Between-group variability

Within-group variability

X

X

1 The statistic was named F in honor of Sir Ronald Fisher, who first described the analysis of variance

procedure and the relevant sampling distributions.
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0 86 751 42 3
F ratio

F Distribution: Number of groups = 5; Number of participants per group = 5

5%

1%

0 86 751 42 3
F ratio

F Distribution: Number of groups = 7; Number of participants per group = 2

5%

1%

FIGURE 1 Examples of F ratio sampling distributions with different NS and different
number of groups.

This equation illustrates that if the independent variable has no effect on the de-

pendent variable, the between-group estimate of variance would reflect only sampling

error—just as the within-groups estimate of variance would reflect sampling error. The

result would be a value of F that, over the long run, would be 1.0. By contrast, if the

independent variable has an effect, the F ratio would, over the long run, be greater

than 1.0.

Sampling Distribution of the F Ratio

Suppose we had three populations (1, 2, and 3) whose means on a variable of interest

were equal (i.e., m1 � m2 � m3, the null hypothesis is true). If we selected a random

sample of 50 individuals from each population and computed an F ratio, we would

expect the value of F to be about 1.0. But, because of sampling fluctuation, it would

not always be exactly 1.0—it might be .79 or 1.24, for example. If we repeatedly sam-

pled 50 people from the populations, we would have a large number of F ratios, which

could be treated as “scores” in a sampling distribution. Such a distribution is called

the sampling distribution of the F ratio. With this sampling distribution, we can de-

termine which values of F are improbable when the null hypothesis is true.

Just as there are different sampling distributions of t for different degrees of

freedom, so too there are different F distributions depending on number of groups

and number of cases per group. Thus, sampling distributions of the F ratio can have

many different shapes, but they are always unimodal and positively skewed. Two

examples of F distributions are shown in Figure 1, which shows the areas correspon-

ding to 5% and 1% of both distributions. These would constitute the critical regions
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for rejecting the null hypothesis for α � .05 and .01, respectively. As was true for the

t statistic, tables have been created to indicate the minimum value of F needed to re-

ject the null hypothesis.

ANOVA PROCEDURES

Analysis of variance can be used in several situations. Although each requires differ-

ent calculations, the underlying logic is similar. We present a detailed computational

example for the simplest form of ANOVA, and subsequently discuss on a more

limited basis two other applications.

One-Way ANOVA

The simplest ANOVA situation involves comparing group means for three or more inde-

pendent groups, such as in our examples of the effect of body positions on systolic blood

pressure, and of the effect of different therapies on stress scores. These situations call for

a one-way analysis of variance. The phrase “one-way” signifies that there is a single

independent variable whose effect on a dependent variable is under study.

TIP: ANOVA can actually be used when there are only two groups,
although the t test is usually used in such situations. In fact, for two
independent groups, the F and the t distributions are mathematically
related such that F � t2.

The calculation of the F statistic for one-way ANOVA involves computing sev-

eral deviation scores that are then squared—similar to procedures for computing the

variance and SD. We will work through one computational example, using the data

on stress scores from Table 1.

Table 2 shows all the computations required for ANOVA. The formula for the

F statistic involves a concept called the sum of squares, which is the sum of the

squared deviations around a mean. The sum of squares-within or SSW (shown in

panel A of Table 2) captures the variation of each patient relative to his or her group

mean—that is, within-group variability. To find the value of SSW, we first compute a

group mean ( ), subtract this value from each individual score to obtain deviation

scores (x), square the deviation scores (x2), and then sum the squares within each

group (Σx2). In our example, the sum of the squared within-group deviation scores is

20.0 for Group 1, 10.0 for Group 2, and 16.0 for Group 3. Then, the summed,

squared deviations for each group are added to yield the value for SSW. Here, SSW �
46.0 (20.0 � 10.0 � 16.0).

The sum of squares-between or SSB (shown in panel B of Table 2) captures

variation of the group means relative to the grand mean—that is, between-groups vari-

ability. SSB is obtained by subtracting the value of the grand mean ( ) from each

group mean ( ) and then squaring this deviation score (xG
2). In our example, the mean

of 3.0 for Group 1 is subtracted from the grand mean of 4.0, and then the deviation

score (�1.0) is squared to yield 1.0. We need a between-group value for each person,

so this value must be multiplied by group size (here n � 5), to yield 5.0. When the

same process is carried out for each group, the values are added together to obtain the

sum of squares—between. In this example, SSB � 70.0 (5.0 � 20.0 � 45.0).

Although the total sum of squares (SST) is not needed to compute the F statistic,

it is useful to see that SSW and SSB, when added, comprise total variability in the

X
XG

X
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distribution of sample scores. Panel C of Table 2 shows the calculation of SST, which

captures the variation of all individual scores relative to the grand mean. The grand

mean ( ) is first subtracted from each of the 15 scores, these deviation scores are

squared, and then the sum across participants is computed. In our example, 

SST � 116.0. Total variability has been partitioned into a between component and a

within component, as follows:

SSW � SSB � SST

46.0 � 70.0 � 116.0

We now have almost everything needed to compute the F statistic. The

formula for F is as follows:

F �
SSB>dfB

SSW>dfW

XG

Grand Mean ( G) � 4.0X

SSW � 46.0

TABLE 2 Stress Scores in Three Groups: Computation of the F Statistic

A. Deviations from Group Means (Within-Groups Variation)

Group 1 Group 2 Group 3 
Music Therapy Relaxation Therapy Controls

X X - 1 x1
2 X X - 2 x2

2 X X - 3 x3
2

0 -3 9 1 -1 1 5 -2 4
6 3 9 4 2 4 6 -1 1
2 -1 1 3 1 1 10 3 9
4 1 1 2 0 0 8 1 1
3 0 0 0 -2 4 6 -1 1

� 3.0 2.0 7.0

Σx2 � 20.0 10.0 16.0

B. Deviation of Group Means from Grand Mean C. Deviations from Grand Mean
(Between-Groups Variation) (Total Variation)

- G xG
2 n (xG

2 � n) X X - G xG
2

3.0 -1 1 5 5.0 0 -4 16
2.0 -2 4 5 20.0 6 2 4
7.0 3 9 5 45.0 2 -2 4

G � 4.0 SSB � 70.0 4 0 0
3 -1 1
1 -3 9
4 0 0
3 -1 1
2 -2 4
0 -4 16
5 1 1
6 2 4

10 6 36
8 4 16
6 2 4

G � 4.0 SST � 116.0X

X

XXXX

X

XXX

D. F Ratio
SSB � 70.0 dfB � 2 MSB � 35.0
SSw � 46.0 dfw � 12 MSW � 3.83
SST � 116.0

F � 35.0 � 3.83 � 9.13
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where SSB � sum of squares—between

SSW � sum of squares—within

dfB � degrees of freedom between

dfW � degrees of freedom within

As this formula indicates, the two sums of squares are divided by their respective

degrees of freedom. The formulas for df for a one-way ANOVA are as follows:

dfB � k � 1

dfW � N � k

where k � number of groups

N � total number of people in the study

In the present example, then, we can compute F as follows:

Before discussing procedures for determining whether this F is statistically

significant, we should point out that the numerator and denominator of the F
formula have special names—mean square. By dividing the sum of the squared

deviations by df, we are essentially computing a “mean” amount of variation—

much as we do when we compute the variance for a single variable. The numerator

is the mean square-between, the average amount of between-groups variation.

The mean square-within in the denominator is the average amount of within-

groups variation. Thus, the formula for computing F could also be presented as

follows:

where MSB � mean square-between

MSW � mean square-within

In our example, the computed F of 9.13 is greater than 1.0—the value expected

if the null hypothesis were true. We must consult a table to see if the computed 

F is sufficiently large to reject the null hypothesis. Table 3 of Appendix: Theoretical

Sampling Distribution Tables shows the critical values for the F distribution for var-

ious degrees of freedom and three values of α (.05, .01, and .001). To use this table,

you first find the page for the desired significance level. Then, reading across the top

row, find the column for degrees of freedom between. Next, reading down the left-

most column, find the row for degrees of freedom within. The critical value is at the

intersection of the column and row. In our example, let us assume that α � .05. With

dfB � 2 and dfW � 12, the critical value of F for α � .05 is 3.88. Our computed F
value of 9.13 is larger than the tabled value, so we can reject the null hypothesis that

the three group means are equal. In fewer than five samples out of 100 would the F
statistic be this large if the null hypothesis were true.

The rejection of the null hypothesis based on ANOVA tells us only that the

population means are probably unequal. We cannot conclude that each group differs

significantly from every other group. For example, we cannot assert that m1 � m2 � m3.

F �
MSB

MSW

F �
70.0> 13 � 1 2
46.0> 115 � 3 2 �

35.0

3.83
� 9.13
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Stress Scores

Sum of Squares df Mean Square F Sig.

Between Groups 70.000 2 35.000 9.130 .004
Within Groups 46.000 12 3.833
Total 116.000 14

Levene Statistic df1 df2 Sig.

.242 2 12 .788

Stress Scores
95% CI for Mean

N Mean
Std. 

Deviation
Std.
Error

Lower
Bound

Upper 
Bound Minimum Maximum

Music Therapy 5 3.00 2.236 1.000 .22 5.78 0 6

Relaxation
Therapy

5 2.00 1.581 .707 .04 3.96 0 4

Control Group 5 7.00 2.000 .894 4.52 9.48 5 10

Total 15 4.00 2.878 .743 2.41 5.59 0 10

Oneway
A Descriptives

B Test of Homogeneity of Variances
Stress Scores

C ANOVA

FIGURE 2 SPSS printout of a one-way ANOVA, using one-way commands.

Other procedures, discussed later in this chapter, are needed to help us determine the

nature of the inequality among group means.

Example of a one-way ANOVA:

Chaplin and colleagues (2007) tested the effects of valerian on the time course of

emergence from general anesthesia in rats. The researchers randomly assigned

32 Sprague-Dawley rats to one of four groups: isoflurane only, isoflurane plus valerian,

isoflurane plus midozolam, and isoflurane plus valerian plus midazolam. One-way

ANOVA was used to tests differences in time emerging from anesthesia.

With the widespread availability of computers, ANOVAs are rarely done by

hand. Figure 2 shows an SPSS printout for the analysis of data in Table 1. Panel A

shows descriptive information for the three groups and for the total sample. The de-

scriptive statistics include the number of cases (N), mean, SD, standard error, the

95% confidence interval around each mean, and the range of score values (Minimum

and Maximum). Panel B shows the results of the Levene test for the homogeneity

of the group variances. This statistic tests the null hypothesis that the variances of

the three populations are equal—one of the ANOVA assumptions. The test 
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statistic (.242) is not significant (p � .788), so we can conclude that the three popu-

lations probably have equal variances. Finally, Panel C presents the ANOVA for

stress scores by treatment group. It shows the sums of squares, dfs, mean squares, F,
and the probability value for F. The computed F shown here, 9.130, is the same as

the F we computed manually. The probability level (.004) indicates that in only four

samples out of 1000 would an F this large be found by chance alone.

TIP: Figure 2 was created in SPSS by using Analyze ➜ Compare Means
➜ One-Way ANOVA. A one-way ANOVA can also be run using Analyze
➜ Compare Means ➜ Means.

Two-Way ANOVA

One-way ANOVA is used to test the effect of a single independent variable on a de-

pendent variable. When the effects of two or more independent variables on a dependent

variable are studied simultaneously, multifactor ANOVA can be used. The most

common multifactor ANOVA is two-way ANOVA, which involves two independent

variables. We will focus our discussion on two-way ANOVAs, although the concepts

can be extended to more than two factors, as appropriate.

Two-way ANOVAs can be used with several research designs. For example,

both independent variables could be experimentally manipulated, with study partici-

pants assigned to different combinations of the two independent variables (a factorial
design). Alternatively, one variable might be manipulated while the other is not,

such as when males versus females are randomly assigned separately to treatment

groups (a randomized block design). A two-way ANOVA could also be used when

neither independent variable is experimentally manipulated (e.g., males vs. females for

the first independent variable, smokers versus nonsmokers for the second indepen-

dent variable). In general, a two-way ANOVA can be used with two nominal-level

independent variables.

Because calculations for a two-way ANOVA are cumbersome, we do not work

through a computational example, but we will use a concrete example to highlight

the logic and central features of two-way ANOVA. Suppose that we wanted to com-

pare the relative efficacy of the two treatments for reducing stress in MI patients—

music therapy and relaxation therapy (without a control group). We will call the type

of treatment variable Factor A, with two levels. We also want to know whether the

treatments are more effective if they are administered in the morning or in

the evening. The time-of-treatment variable, Factor B, also has two levels, which

means that the design can be described as a 2 � 2 design (two levels of Factor A by

two levels of Factor B). In this study, patients will be randomly assigned to one of the

four groups. Some fictitious data for this study for 20 people—five per group—are

presented in Table 3. As this table indicates, the mean for the music therapy treat-

ment (2.0) is lower than the mean for the relaxation therapy treatment (3.0). The

means for the morning treatments and the evening treatments are identical (2.5). But

the lowest mean stress score is observed among those who received the music therapy

in the evening (1.0), while the highest mean is observed among those who received

relaxation treatment in the evening (4.0).

In this factorial design, we are testing three null hypotheses. The first concerns

the equality of population means for the type-of-treatment factor across both times

of administration. The null hypothesis is that the mean stress score for those in music
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TABLE 3 Stress Scores in a 2 � 2 Design: Example of Two-Way ANOVA

Factor A–Treatment

Factor B–Time 
of Treatment

Music 
Therapy (1)

Relaxation 
Therapy (2)

0 1
6 Group 1 4 Group 2 Morning Patients

Morning (1) 2 X11 � 3.0 3 X21 � 2.0 XB1 � 2.5
4 2
3 0

1 2
2 Group 3 6 Group 4 Evening Patients

Evening (2) 1 X12 � 1.0 5 X22 � 4.0 XB2 � 2.5
0 4
1 3

Music Therapy Relaxation Therapy
Patients Patients All Patients

XA1 � 2.0 XA2 � 3.0 zXG � 2.5

therapy is the same as that for people in relaxation therapy. The second null hypoth-

esis concerns the equality of population means for the time of treatment factor,

across both types of treatment. This null hypothesis is that the mean for morning

treatment is the same as the mean for evening treatment.

The third null hypothesis, called an interaction hypothesis, concerns the

joint effects, or interaction, of Factors A and B. Interaction concerns whether the

effect of one independent variable is consistent for every level of a second inde-

pendent variable. A major advantage of a two-way ANOVA is that researchers can

directly examine such interaction effects. If each independent variable was exam-

ined separately in two different studies, it would not be possible to test for interac-

tions. In our present example, the question is whether the two therapies have the

same effects at different times of day. Perhaps music therapy is more effective in the

morning and relaxation therapy is more effective in the evening, for example. For

interactions, the null hypothesis is that the population means for each combination

of factors are equal.

The logic of two-way ANOVA is similar to that for one-way ANOVA: Total

variation in the scores of the participants is partitioned into different components,

and between-groups variation is contrasted with within-groups variation. However,

now there are four, rather than two, components contributing to variability, because

there are three sources of between-groups variation:

SST � SSW � SSA � SSB � SSAB

where SST � total variability

SSW � within-group variability

SSA � variability associated with Factor A

SSB � variability associated with Factor B

SSAB � variability associated with the interaction of Factors A and B
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Because there are three hypotheses tested, three F ratios must be computed. In

each case, the sum of squares (i.e., the squared deviations around the relevant mean)

is divided by its respective degrees of freedom to yield a mean square. Then, the

mean square for the three “between” components is divided by the mean square

within, to yield the values of F. As an example, the F ratio for the interaction term is

as follows:

Computations and formulas are not shown (see, for example, Jaccard & Becker,

2001), but the three F values for the data in Table 3 are: FA � 1.91, FB � 0.00, and 

FAB � 7.62. The final step is to compare these computed values of F to tabled values for

the F distribution. For the Fs corresponding to the two independent variables (called the

main effects), the degrees of freedom equals the number of levels, minus 1. There

are two levels for both independent variables in our example, so dfA � 1 and dfB � 1.

The formula for degrees of freedom for the test of the interaction effect is as follows:

dfAB � (kA � 1)(kB � 1)

where kA � number of levels of Factor A

kB � number of levels of Factor B

Thus, in the present example, the df for the interaction term is (2 � 1)(2 � 1) � 1.

For the within-groups term, the df is as follows:

dfW � N � (dfA � dfB � dfAB � 1)

In the present example, then:

dfW � 20 � (1 � 1 � 1 � 1) � 16

Assume we are testing the three hypotheses using α � .05. Consulting Table 3 of

Appendix: Theoretical Sampling Distribution Tables, we find that with 1 and 16 degrees

of freedom, the critical value of F is 4.49. For our three computed F values, only the F
for the interaction term (7.62) is statistically significant. We accept the null hypotheses

that the population means for type of treatment are equal, and that the population means

for the time of treatment are equal. We reject the null hypothesis that stipulates equality

of population means across treatment type conjoined with treatment time.

Interaction is a concept that merits further discussion. The interaction effect of

type and time of treatment refers to the effect of particular joint combinations of

the two factors. It represents the joint effect over and above the sum of the separate

effects. This concept can be demonstrated graphically.

Suppose, for the sake of illustration, that the means for the music therapy were

2.0 in the morning and 1.0 in the evening, and that the means for the relaxation therapy

were 3.0 in the morning and 2.0 in the evening. These means are graphed in Figure 3 (A),

which shows a situation with no interaction. Music and relaxation therapy have similar

effects on stress relative to one another, regardless of time of day (i.e., the means are

lower for music therapy than for relaxation therapy both in the morning and in the

evening). Furthermore, the two time periods have similar effects on stress relative to

one another, regardless of which therapy is used (i.e., stress is lower in the evening

than in the morning for both music and relaxation therapy). There are no unique effects

associated with a particular combination of the two factors.

FAB �
SSAB>dfAB

SSW>dfW

�
MSAB

MSW
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Mean
Stress
Score

Morning

A. No Interaction

Evening

4

3

2

0

1

Morning

B. Crossed Interaction

Evening

4

3

2

0

1

Morning

C. Uncrossed Interaction

Evening

4

3

2

0

1

Music Therapy

Relaxation Therapy

FIGURE 3 Graphs illustrating interaction effects.

The graph in Figure 3 (B) displays the means we obtained in our example (i.e.,

for the data shown in Table 3). The crossed lines illustrate the interaction: Stress is

lowest among those who got music therapy in the evening (but music therapy was less

effective in the morning), while stress is highest among those who got relaxation

therapy in the evening (but relaxation therapy was more effective in the morning).

This type of interaction is relatively rare.

Figure 3 (C) illustrates a different type of interaction. In this graph, the mean

stress scores are 2.0 in the morning, regardless of type of treatment. In the evening, how-

ever, the mean for the relaxation therapy is 4.0, while that for the music therapy is 1.0.

In this second interaction, type of treatment has a different effect on stress only in the

evening. Of course, we cannot tell whether an interaction effect is statistically signifi-

cant simply by plotting the means on a graph. Only a full statistical analysis via two-

way ANOVA would enable us to draw conclusions about interactions in the population.

Example of a two-way ANOVA:

Rew, Grady, Whittaker, and Bowman (2008) examined the effects of duration of

homelessness (less than 6 months versus 1 year or more) and sex on various sexual

health outcomes among homeless youth. The researchers reported results for numer-

ous two-way ANOVAs. They found, for example, that regardless of sex, youth who

had been homeless more than 1 year reported significantly more sexual risk-taking be-

haviors—in other words, there was no interaction of sex and duration. There was,

however, an interaction on a measure of social connectedness. Newly homeless young

men reported higher levels of connectedness than chronically homeless young men,

while duration of homelessness was unrelated to connectedness in young women.

Computer analysis is the norm for multifactor ANOVA. Figure 4 presents

selected portions of the SPSS printout for the two-way ANOVA applied to the data in

Table 3. Panel A summarizes the analysis of variance. The summary table shows

the sum of square, df, mean square, F statistic, and probability level for main effects

(Type and Time) and interaction effects for all components. For type of intervention

(Type, second row), the sum of squares is 5.000, the mean square is 5.000, and the 

F of 1.905 is not significant (Sig. � .187). In about 19 samples out of 100, we could
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Type of Treatment
Time of 

Treatment Mean Std. Error
95% CI

Lower Bound Upper Bound

Music Therapy Morning 3.000 .725 1.464 4.536
Evening 1.000 .725 �.536 2.536

Relaxation Therapy Morning 2.000 .725 .464 3.536
Evening 4.000 .725 2.464 5.536

Source
Type III Sum
of Squares df Mean Square F Sig.

Model 150.000 4 37.500 14.286 .000
Type 5.000 1 5.000 1.905 .187
Time .000 1 .000 .000 1.000
Type * Time 20.000 1 20.000 7.619 .014
Error 42.000 16 2.625
Total 192.000 20

Univariate Analysis of Variance

A Tests of Between-Subjects Effects

Dependent Variable: Stress Scores

B Estimated Marginal Means 
Type of Treatment * Time of Treatment

Dependent Variable: Stress Scores

FIGURE 4 Selected portions of an SPSS printout for a two-way ANOVA.

expect to find an F this large simply on the basis of chance. This is an unacceptably

high risk of a Type I error, so we accept the null hypothesis that the two types of

treatment are equivalent.

There was no variability in the two levels of the Time factor (means for morn-

ing and evening were both 2.50), and so the sum of squares, mean square, and value

of F is 0.00. The probability of obtaining these group means if the null hypothesis

was true is 1.00. The Type * Time interaction, however, has an F � 7.619, and the

association p value is .014.

All of the variability attributable to the main effects and the interaction effect

combined is shown on the first line labeled “Model,” and all of the variability attrib-

utable to other factors (i.e., within-group variability) is shown on the line labeled

“Error.” The mean square—within, against which all other mean squares are com-

pared, is 2.625. Total variation, the total sum of squares, is 192.000, which includes

error variance (42.000) and model variance (150.00).

Panel B displays the cell means, i.e., the mean stress scores for each combina-

tion of treatment type and time of treatment. The panel also shows the standard

errors, and the 95% confidence interval, for each cell mean.

TIP: Figure 4 was created in SPSS using Analyze ➜ General Linear
Model ➜ Univariate. The general linear model (GLM) is a broad class of
analyses that includes many statistical tests, including the t test and
ANOVA.
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Repeated Measures ANOVA

Repeated measures analysis of variance (sometimes abbreviated RM-ANOVA) is

used when means are computed for the same people at three or more points in time.

A one-way RM-ANOVA is an extension of the within-subjects dependent groups 

t test, just as the simple one-way ANOVA is an extension of the between-subjects

independent groups t test.

In some nonexperimental studies, the same participants are measured multiple

times to capture the effects of the passage of time (e.g., mean weight of low birth-

weight infants at 1 week, 2 weeks, and 3 weeks after birth). In other situations, mul-

tiple measures are obtained as a design feature in an experimental crossover design,
in which participants serve as their own controls. For instance, in an earlier example,

we discussed randomly assigning 100 people to four different body position groups

(25 per group), and then comparing groups with respect to SBP during the Valsalva

maneuver. We could, however, have designed the study so that the same people were

used to assess blood pressure in all four body positions. Ideally, participants would

be randomly assigned to different orderings of body position to rule out systematic

carry-over and ordering effects.

TIP: RM-ANOVA can also be used in a multifactor situation that
includes both within-subjects (time) and between-subjects (e.g.,
experimental versus control) components.

As an example, suppose we wanted to compare three interventions for

preterm infants, with regard to effects on the infants’ heart rates: (1) nonnutritive

sucking; (2) nonnutritive sucking plus rocking; or (3) rocking alone. Using an

experimental repeated measures design, the 12 infants participating in the study are

randomly assigned to six different orderings of the three treatments,2 which is the

independent variable (IV). Heart rate, the dependent variable, is measured after

each treatment. The null hypothesis for this study is that type of intervention is

unrelated to heart rate (i.e., m1 � m2 � m3). The alternative hypothesis is that there is a

relationship between type of intervention and heart rate (i.e., that the three

population means are not all equal). Some fictitious heart rate data for the 12 infants

are shown in Table 4. As these data indicate, there is variability in heart rates

both across infants within each condition, and across the three treatment conditions

within infants.

As was true with other ANOVA situations, total variability in the dependent

variable is represented by the total sum of squares, which can be partitioned into

different contributing components. In RM-ANOVA, three sources of variation

contribute to total variability:

SStotal � SStreatments � SSsubjects � SSerror

Conceptually, the sum of squares-treatments is analogous to the sum of

squares—between in a between-subjects design: It represents the effect of the

independent variable. (In a nonexperimental context, when measurements are taken

at multiple points without an intervention, it may be called sum of squares-time).
The sum of squares-error (sometimes called the sum of squares-residual) is

2 The six possible orderings are as follows: 123, 132, 213, 231, 312, and 321.
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TABLE 4 Heart Rates for Infants in Three Conditions: 
Example of One-Way Repeated Measures

Infant

Condition 1
Nonnutritive 

Sucking

Condition 2 
Nonnutritive Sucking

Plus Rocking
Condition 3

Rocking

1 152 155 170
2 132 135 140
3 175 180 202
4 165 170 183
5 143 149 152
6 160 171 188
7 150 148 161
8 157 162 176
9 138 143 152

10 171 176 191
11 148 151 157
12 145 144 168

�X � 1836 1884 2040

X1 � 153.0 X2 � 157.0 X3 � 170.0 XG � 160.0

conceptually similar to the sum of squares-within in regular ANOVA, in that they

both represent variations associated with random fluctuations.

The third component, sum of squares-subjects, has no counterpart in a simple

one-way ANOVA, because the individuals in the groups being compared in regular

ANOVA are not the same people. The SSsubjects term captures the effects of individual

differences, the effects of which are consistent across conditions. That is, regardless of

conditions, some infants tend to have high heart rates (e.g., Infant 3) and others tend to

have low heart rates (e.g., Infant 2). Because the effect of individual differences can be

identified and statistically isolated from the error term (random fluctuation), a repeated

measure ANOVA results in a more sensitive test of the relationship between the inde-

pendent and dependent variables than between-subjects ANOVA. By statistical isola-

tion, we mean that variability attributable to individual differences is removed from the

denominator in computing the F statistic. The formula for F that is used to estimate the

equivalence of population means across conditions contrasts SStreatments with SSerror:

Degrees of freedom in a one-way RM-ANOVA can be computed using the

following formulas:

dftreatments � k � 1

dfsubjects � N � 1

dferror � (k � 1)(N � 1)

Thus, in our present example, the df for treatments and error, which we need to

calculate F, are as follows:

dftreatments � 3 � 1 � 2

dferror � (3 � 1)(12 � 1) � 22

F �
SStreatments>dftreatments

SSerror>dferror

�
MStreatments

MSerror
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3 Those wishing to perform the calculations for the RM-ANOVA manually can consult such texts as

Jaccard and Becker (2001) or Gravetter and Wallnau (2008).

We do not show actual formulas and calculations for the sums of squares3, but

the values are SStreatments � 1896.0 and SSerror � 368.0. We can now compute F for

our current example:

As before, we must compare the computed F statistic to a tabled F value. Let

us assume this time that our significance criterion is .001. With 2 and 22 degrees of

freedom and α � .001, the tabled value of F is 9.61. Thus, because the computed

value of F is substantially larger than the critical value, we can conclude that the dif-

ferences in the condition means are statistically significant. In fewer than one out of

1,000 samples from the population of preterm infants subjected to the three condi-

tions would we expect to find an F this large on the basis of chance alone, if the null

hypothesis were really true.

One other issue with regard to RM-ANOVA is that there are two other assump-

tions that are often difficult to meet—the assumptions of sphericity and compound

symmetry. Compound symmetry is an assumption that there is (1) homogeneity of

within-treatment variances and (2) homogeneity of covariance between pairs of

within-treatment levels. The first part of this assumption is that the variances of the

dependent variable are equal across the various time measurements in the popula-

tion. The second part is the assumption that the correlations between different pairs

of measures of the dependent variable across time are equal in the population.

Sphericity is the assumption that the variance of population difference scores

for any two time periods is the same as the variance of population differences for any

other two time periods. In our example, we would have to assume that the variance

of scores that we would obtain across the population by subtracting infants’ heart

rate values in the nonnutritive sucking condition from those in the rocking condition

is the same as the variance of scores we would obtain for other difference scores.

Sphericity and compound symmetry are related: If the compound symmetry assump-

tion is met, then the sphericity assumption is also met. Sphericity is the assumption

that is usually tested, most often by means of Mauchly’s test.
Unfortunately, the F test in RM-ANOVA is not robust to violation of sphericity.

Because of this, many statisticians recommend a modification when sphericity does

not hold. The modification involves multiplying dftreatments and dferror by an adjustment

factor to obtain new (smaller) degrees of freedom that are then used in assessing statis-

tical significance. Two frequently used adjustment factors, are the Huynh-Feldt ep-
silon and the Greenhouse-Geisser epsilon.

Figure 5 (created in SPSS using Analyze ➜ General Linear Model ➜ Repeated

Measures) presents a portion of the SPSS output for a one-way RM-ANOVA, using the

data on infants’ heart rate in Table 4. Panel A (Within-Subjects Effects) shows that,

when sphericity is assumed, the results are identical to those we computed earlier.

When adjustment factors are applied, degrees of freedom are lower for both FACTOR1

(the treatment factor) and error. The F value remains the same at 56.674, but the signif-

icance of F is evaluated with different degrees of freedom, depending on the adjust-

ment. Still, in this case, the F is significant at p � .001 even with corrections. We might

note that the Mauchly test of sphericity was statistically significant for these data (not

shown), suggesting the need for an adjustment factor. Panel B of Figure 5 shows the

F �
1896.0>2
368.0>22

�
948.0

16.73
� 56.67
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General Linear Model

A Tests of Within-Subjects Effects

Measure: Heart Rate

Source
Type III Sum
of Squares df Mean Square F Sig.

Factor1 Sphericity assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

1896.000

1896.000

1896.000

1896.000

2

1.371

1.501

1.000

948.000

1383.060

1263.406

1896.000

56.674

56.674

56.674

56.674

.000

.000

.000

.000

Error
(Factor1)

Sphericity assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

368.000

368.000

368.000

368.000

22

15.080

16.508

11.000

16.727

24.404

22.293

33.455

Estimated Marginal Means

B

1. Grand Mean

Measure: Heart Rate

Mean Std. Error
95% CI

Lower Bound Upper Bound

160.000 4.388 150.343 169.657

2. Factor1

Measure: Heart Rate

Factor1 Mean Std. Error
95% CI

Lower Bound Upper Bound

1 153.000 3.776 144.689 161.311

2 157.000 4.187 147.785 166.215

3 170.000 5.363 158.197 181.803

FIGURE 5 Selected portions of an SPSS printout for a one-way RM-ANOVA.

grand mean ( ) with its standard error and 95% CI, followed by the same

information for the mean heart rates for the three treatment conditions.

Example of a one-way RM-ANOVA:

Skybo and Buck (2007) gathered data on children’s stress and coping four times over the

course of a school year (October, February, March, and April) to examine patterns of

change in relation to standardized testing. The researchers used repeated measures

ANOVA to test changes in mean scores over time, and found numerous significant

changes. For example, number of stress symptoms increased from October to

1 month before testing (February), but then declined in March.

XG � 160.000
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OTHER STATISTICAL ISSUES RELATING TO ANOVA

As with t-tests, ANOVA addresses the very important question of whether or not a

relationship exists between the independent and dependent variables. In this sec-

tion, we discuss other related analyses that address questions about the nature of the

relationship, precision of estimates, magnitude of effects, and the power of the

statistical test.

The Nature of the Relationship: Multiple Comparisons

The F test for analysis of variance considers the null hypothesis of equality of

means against the alternative that not all the population means are equal. The re-

jection of the null indicates the probability that there is a relationship between the

independent and dependent variable—that is, that the population means are

unequal. A significant F test does not, however, tell us which pairs of means are

significantly different from one another. To determine the exact nature of the rela-

tionship between the independent and dependent variables, additional analyses are

necessary.

A number of alternative tests—called multiple comparison procedures—can

be used to compare pairs of means. These procedures are preferable to using multi-

ple t tests because they offer better protection against the risk of a Type I error

(i.e., an incorrect inference that differences between pairs of means are significant).

Among the most widely-used multiple comparison tests are the Scheffé test,
Tukey’s honestly significant difference (HSD) test, Duncan’s multiple-range
test, and Fisher’s least significant difference (LSD) test. There is some controversy

among statisticians regarding which test has the greatest accuracy, but a full

discussion of the merits and shortcomings of the alternatives is beyond the scope. A

frequent choice among nurse researchers, and the one that Jaccard and Becker

(2001) recommend, is Tukey’s HSD test.

TIP: The multiple comparison procedures discussed here are called post
hoc tests or a posteriori comparisons, which are comparisons completed
after a full ANOVA. Researchers sometimes decide in advance which
specific pairs of means they want to compare—they have a substantive
interest in comparing certain groups, prior to learning what the data look
like. In this situation, they might use a priori comparisons, which are also
called planned comparisons. The advantage of planned comparisons is
that they increase the power and precision of the data analysis. Planned
comparisons can be performed in SPSS within the Oneway and GLM
procedures.

For manual computations, however, the simplest multiple comparison method

is Fisher’s LSD test, also called the protected t test. When an ANOVA F test is sta-

tistically significant, pairs of means can be compared by t tests that use the MSW

term from ANOVA as the estimate of the population variance. To illustrate, we will

use our earlier example for one-way ANOVA, which compared mean stress scores

for three groups of MI patients (a music therapy group, relaxation therapy group, and

a control group). In this example, we rejected the null hypothesis that all the popula-

tion means were equal, so we can proceed to compare the three pairs of means using
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protected t tests. The following are the three null and alternative hypotheses being

tested via the multiple comparisons:

H0: m1 � m2 H1: m1 � m2

H0: m1 � m3 H1: m1 � m3

H0: m2 � m3 H1: m2 � m3

The formula for Fisher’s LSD test (here, using notation for the first null

hypothesis) is as follows:

where � means for Groups 1 and 2

MSW � mean square within, from ANOVA

n1, n2 � number of cases for Groups 1 and 2

We can illustrate with the calculation of a protected t for one of the three pairs

of means in our stress intervention example—the music therapy group ( )

and the control group ( ). Using the value of MSW computed earlier (3.83),

we find that the value of the protected t is as follows:

Although we do not show the other calculations, the computed values of protected

t for the other two pairs are 0.81 ( versus ), and �4.04 ( versus ). To find the 

critical value in the t table, we need to compute the degrees of freedom, which is: dfW � N
� k. In our present example, then, df � 12 (15 � 3). Consulting Table 2 of Appendix:

Theoretical Sampling Distribution Tables, we find that the critical value of t for df � 12

and a� .05 is 2.18. Thus, the difference between the means of Groups 1 and 3, and the

difference between the means of Groups 2 and 3, are statistically significant. Both thera-

pies resulted in significantly lower stress scores than the absence of a therapy (i.e., the con-

trol condition). The means for the two types of therapy were not significantly different.

When group sample sizes are equal, as they are in this example, it is possible

to determine what least significant difference (LSD) between means is needed for

significance, using the following formula:

Thus, in our example:

All pairs of means differing by at least 2.70 points on the stress scale would be

significantly different from one another at a � .05.

Protected t tests can also be used in factorial designs when there are signifi-

cant F tests that require clarification. Of course, when the design is 2 � 2, such as

LSD � 2.1823.83 1.40 2 � 2.70

LSD � ttabled2MSW 12 � n 2

X3X2X2X1

t �
3.0 � 7.0

B3.83 a1
5

�
1

5
b

� �3.23

X3 � 7.0

X1 � 3.0

X1, X2

t �
X1 � X2

BMSW a 1

n 1

�
1

n 2

b

158



Analysis of Variance

(I) Experimental
Group

(J) Experimental 
Group

Mean 
Difference 

(I-J)
Std. 
Error Sig.

95% Confidence
Interval

Lower
Bound

Upper
Bound

Tukey 
HSD

Music Therapy Relaxation Therapy
Control Group

1.000
–4.000*

1.238
1.238

.706

.018
–2.30
–7.30

4.30
–.70

Relaxation Therapy Music Therapy
Control Group

–1.000
–5.000*

1.238
1.238

.706

.004
–4.30
–8.30

2.30
–1.70

Control Group Music Therapy
Relaxation Therapy

4.000*
5.000*

1.238
1.238

.018

.004
.70

1.70
7.30
8.30

LSD Music Therapy Relaxation Therapy
Control Group

1.000
–4.000*

1.238
1.238

.435

.007
–1.70
–6.70

3.70
–1.30

Relaxation Therapy Music Therapy
Control Group

–1.000
–5.000*

1.238
1.238

.435

.002
–3.70
–7.70

1.70
–2.30

Control Group Music Therapy
Relaxation Therapy

4.000*
5.000*

1.238
1.238

.007

.002
1.30
2.30

6.70
7.70

Multiple Comparisons

Dependent Variable: Stress Scores

* The mean difference is significant at the 0.05 level.

FIGURE 6 SPSS printout for two multiple comparison tests.

the example we presented in this chapter (type of treatment � time of treatment),

there is no need to clarify the nature of effect for the two factors: if the F test for a

factor is significant, then the two levels of the factor are significantly different. A

significant interaction such as we observed in our example does, however, require

clarification. The issue is determining significant differences between the cell

means (combinations of the two factors). We can use the previously presented for-

mula to compute the LSD. Although we do not show the computations, the value for

MSW is 2.63, and, for df � 16 (20 subjects minus 4 cells) and a � .05, the critical

(tabled) value of t is 2.12. Thus:

The LSD indicates that all differences between cell means that are greater than

or equal to 2.17 are significant at the .05 level. Referring back to Table 3, we find

that only one pair of cell means is significantly different: In the evening only, music

therapy is significantly different from relaxation therapy. The mean difference of 3.0

between these two cell means (4.0 � 1.0) exceeds the LSD of 2.17.

When computers are used to perform the multiple comparisons, researchers

can run several alternative multiple comparison tests. Within SPSS, there are over

10 options, including some that can be used when the homogeneity of variance

assumption is violated. Figure 6 shows the SPSS printout (created within the

Oneway procedure) for two tests, Tukey’s HSD and the LSD tests. Both tests resulted

in the same conclusions: Mean stress scores in both the music therapy and the

relaxation therapy were significantly different from those in the control group,

but were not significantly different from each other. Note, however, that the actual 

p values do differ. For example, for the music therapy–control comparison, p � .018 for

the Tukey test, but p � .007 for the LSD test. Tukey’s HSD test is more conservative

LSD � 2.1222.63 1.40 2 � 2.17
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in that probability values are higher, making it more difficult to reject the null

hypothesis than when LSD is used, but the HSD test has more desirable statistical

properties.

TIP: A useful concept in statistical analysis is called sensitivity testing.
These are analyses designed to assess the impact of different assumptions
or different analytic approaches, to see if conclusions are altered—that is,
to see whether decisions are sensitive to different approaches. So, for
example, one could use different post hoc procedures to see if results are
robust to alternative methods.

Example of multiple comparisons:

Park, Jarrett, Cain, and Heitkemper (2008) compared three groups of women with

irritable bowel syndrome who differed in terms of severity of bloating (minimal,

mild, and moderate-severe). The groups were compared in terms of symptoms of

psychological distress, using one-way ANOVAs. When significant Fs were obtained,

Tukey’s HSD test was used for pair-wise comparisons.

Precision of Estimates: Confidence Intervals

When multiple means are being compared, as is the case in ANOVA, confidence in-

tervals can be built around individual means, as shown in the SPSS printout in Figures

2, 4, and 5. More useful information about precision, however, is obtained by construct-

ing CIs around the mean differences for pairs of means. Figure 6 shows that when mul-

tiple comparison tests are performed within SPSS, CIs are constructed around differ-

ences in means, with a 95% CI being the default. As with t tests, an interval that

includes 0.0 is not statistically significant at the corresponding a level—here at .05.

Note that the confidence limits vary depending on which test is used. The 95% CI
around the mean difference between music and relaxation therapy was �2.30 to 4.30

for the Tukey HSD test, but from �1.70 to 3.70 for the LSD test. Therefore, if CIs are

reported, you need to indicate the underlying test used to calculate the confidence lim-

its.

The Magnitude of the Relationship: Eta-Squared

As you know, statistical significance does not necessarily mean a powerful relation-

ship between the independent and dependent variables. When researchers wish to de-

termine the magnitude of a relationship in the context of an ANOVA situation, the ef-

fect size index most often used for the overall effect is eta-squared. Although Greek

letters are typically used in statistics to designate population parameters, an exception

is eta-squared, which is most often indicated in research reports as h2.

Eta-squared can be computed from the components for the F formula. For a

one-way analysis of variance:

From this formula, we can see that h2 represents the proportion of the total vari-

ability in a set of scores that is attributable to the independent variable (i.e., variability

between groups). The correlation coefficient r, when squared, represents the 

h2 �
SSB

SST
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proportion of variability in the dependent variable explained by the independent vari-

able, and thus r2 and h2 are conceptually equivalent.

For our example that compared stress scores for three groups of MI patients

(music therapy, relaxation therapy, controls), we can compute the following:

This is a powerful relationship: 60% of the variability in stress scores is attrib-

utable to the different treatments. It is unusual to find a value of h2 this high in actual

intervention studies, but our example was deliberately contrived to yield significant

results. With a small N (again, deliberately small to minimize computational com-

plexity), a strong relationship was needed to achieve statistical significance. (In SPSS,

h2 is computed when one-way ANOVA is performed using the “Compare Means”

procedure, but not in the “Oneway” procedure.)

Computing eta-squared for a multifactor ANOVA is similar to procedures just

described: The sum of squares attributable to the factor (or interaction) of interest is

contrasted with the total sum of squares. Eta2 can be calculated by SPSS within a

multifactor ANOVA using the general linear model (GLM) routine, which was used

to create Figure 4. In the example that compared stress scores for music versus relax-

ation therapies administered in the morning or evening, h2 for the type of therapy

factor was .106, that for time of therapy administration was .000, while that for the

interaction was .323 (not shown in Figure 4).

For a one-way repeated measures ANOVA, the formula for computing eta-

squared is as follows:

Eta-squared in the context of a one-way RM-ANOVA represents the propor-

tion of variability in the dependent variable attributable to the independent variable

after variability associated with individual differences has been removed. In our ex-

ample of the one-way RM-ANOVA, which involved assigning infants to different

ordering of three different interventions (Table 3), we find that:

This tells us that 84% of the variability in the infants’ heart rates is attributable to the

different conditions, after the influence of individual differences in heart rates is

removed.

As was true in the t-test situation, Cohen (1988) has established some guide-

lines for qualitatively describing effect sizes in an ANOVA context. Cohen’s conven-

tional values for small, medium, and large effects correspond to values of eta-squared

of .01, .06, and .14, respectively.

Information about the magnitude of the relationship provides valuable in-

formation for interpreting the results of an ANOVA. However, the eta-squared

index is almost never used in meta-analyses. The problem with eta-squared in the

context of a meta-analysis is that this effect size index tells us nothing about the

nature of the group differences—that is, which pairs of means are different.

A more usual procedure is to calculate d statistics for the paired comparisons of

interest (Cooper, 2010).

h2 �
1896.0

1896.0 � 368.0
� .84

h2 �
Streatments

SStreatments � SSerror

h2 �
70.0

116.0
� .60
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TABLE 5 Power Table for One-Way Between-Groups ANOVA, for � � .05—Three Groups

Population Eta-Squared

Power .01 .03 .05 .07 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80

.10 22 8 5 4 3 2 2 2 — — — — — —

.25 76 26 16 9 7 5 4 3 — — — — — —

.50 165 55 32 23 16 10 8 6 5 3 3 2 2 —

.70 255 84 50 35 24 16 11 9 7 5 4 3 2 2

.80 319 105 62 44 30 19 14 11 9 6 4 3 2 2

.90 417 137 81 57 39 25 18 14 11 7 5 4 3 2

.95 511 168 99 69 47 30 22 16 13 9 6 4 3 2

.99 708 232 137 96 65 41 29 22 18 12 8 6 4 3

NOTE: Entries in body of table are for n, the number of participants per group.

Example of eta-squared:

Oostrom and van Mierlo (2008) evaluated an aggression management training program

for healthcare workers to help them cope with workplace violence. Participants’ scores

on various outcomes, including ability to cope with adverse working situations, were

obtained before training, after training, and 5 weeks later. Using RM-ANOVA,

improvement over time was found to be significant, and h2 was .67.

Power Analysis for ANOVA

As you know, power analysis is used to estimate the probability of correctly rejecting the

null hypothesis. When used during the design phase of a study, power analysis helps

researchers to make sample size decisions to minimize the risk of a Type II error. When

applied after a study is completed, power analysis can sometimes help in interpreting

results, particularly if group differences were not statistically significant.

There are alternative methods of doing a power analysis in an ANOVA context.

The simplest approach involves estimating the population effect size h2 (e.g., from

prior research or a pilot study). In this situation, with effect size estimated, and the

desired power (usually .80) and alpha (usually .05) specified, power analysis solves

for the fourth component, sample size. When power analysis is performed following

ANOVA for interpretive purposes, the h2 from the study itself is used as the popula-

tion estimate of effect size, and the power analysis solves for power.

To illustrate a post hoc power analysis to estimate power for a one-way

ANOVA, let us use our example of stress scores in three treatment groups. The h2

(effect size) for the data shown in Table 2 was found to be .60, and the number of

participants per group was five. Table 5, which is appropriate when a � .05 and the

number of groups is 3, allows us to estimate power. The top row presents estimates

of the population eta2. Reading down in the column headed by .60, we look for the

group size of five, and then read across to the left to find the estimate of power in the

first column. Although the group size of five does not appear in the table, we can in-

terpolate: five falls between four and six, so power is between the corresponding

power values of .95 and .99. The power analysis suggests, then, that the estimated

risk of having committed a Type II error in this study was less than 5%—well below

the standardly acceptable risk of 20%.
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To use Table 5 to estimate sample size needs, you would enter the table at the

row for the desired power (usually .80, which is shaded) and the column for the esti-

mated value of h2. The value at the intersection indicates the needed sample size per

group. For example, if the estimated h2 were .10, 30 people per group would be

needed to achieve a power of .80.

When there is limited evidence about effect size values, researchers sometimes

use Cohen’s guidelines for small, medium, and large effect sizes as a last resort. As was

true in the t-test situation, we think it is prudent to expect no larger than a small-to-

moderate effect size in nursing studies, unless there is good evidence to suggest a larger

effect. A small-to-moderate effect would correspond to an h2 between .01 and .06, i.e.,

about .04. Our effect size of .60 in the stress-reduction intervention example, as noted,

resulted from contrived data values that were designed to yield a significant result with

small ns. In real situations, an effect size this large would be extremely unlikely.

RESEARCH APPLICATIONS OF ANOVA

This section briefly reviews some of the major applications of ANOVA, and presents

methods of reporting ANOVA results in research reports.

The Uses of ANOVA

The main uses of ANOVA are, not surprisingly, analogous to those of the t test. We

briefly illustrate these applications here.

1. Answering research questions Many substantive research questions can be di-

rectly answered using ANOVA, as we have shown in the actual examples in this

chapter. Research applications for ANOVA are diverse both substantively and

methodologically. ANOVA can be used to test differences in means for individ-

uals allocated to different treatments (i.e., in RCTs or quasi-experimental stud-

ies), as well as in studies with three or more groups formed nonexperimentally. It

can also be used for both within-subjects and between-subjects designs.

2. Testing biases As you know, researchers often make group comparisons to

determine the existence and extent of any biases that could affect the interpre-

tation of the results. Selection biases—group differences resulting from extra-

neous characteristics rather than from the effect of the independent variable—

are among the most worrisome and most frequently tested. For example, Webb

(2008) studied the effect of participation in focus groups on low-income

African-American’s smokers’ willingness to participate in smoking interven-

tion studies. She compared participants in the 10 focus groups in terms of such

baseline characteristics as number of years smoking and number of cigarettes

smoked per day, using one-way ANOVA. Whenever there are more than two

groups to compare, ANOVA can also be used to test other biases.

3. Assessing the construct validity of instruments ANOVA can be used in con-

junction with the known-groups technique to examine the construct validity of

instruments, if three or more known groups are being compared. For example,
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TABLE 6 Example of a Table for One-Way ANOVA Results

Pain-related 
Outcomes

Air Mattress
Group (n � 50)

Mattress � Exercise
Group (n � 50)

Control Group 
(n � 50)

M SD M SD M SD F p h2

Number of turns 7.0 3.2 5.9 3.9 6.9 3.4 1.96 .23 .003
Number of times

acetaminophen given
1.6 1.1 0.7 0.6 1.5 1.4 5.01 .007 .024

Number of times other
medications given

0.6 1.6 0.6 1.1 1.4 1.7 3.27 .04 .014

Pain Control Procedures for Coronary Surgery Patients, by Treatment Group: ANOVA Results

Salamonson, Everett, Koch, Andrew, and Davidson (2008) undertook a validation

study of the English Language Acculturation Scale (ELAS), which is a measure

of English-language acculturation. They created three groups of nursing students

based on ELAS scores (low, moderate, and high scores), and used ANOVA to test

differences in mean grades in four academic subjects among the three groups.

The F tests were significant, and Tukey’s HSD test revealed that grade differ-

ences were especially pronounced among those with low versus high scores on

the ELAS. These hypothesis-confirming analyses supported the construct 

validity of the ELAS.

The Presentation of ANOVA Results in Research Reports

As with t tests, ANOVA results are usually reported in the text alone if there are only

one or two F tests. Within the text, it is usual to report the name of the test (F),
degrees of freedom, the calculated value of F, and the p value, as in the following ex-

ample from our one-way ANOVA: F (2, 12) � 9.13, p � .001. If there are numerous

tests—or if the test is for a complex multifactor design—a table is an efficient way

to summarize the results. The text can then be used to highlight the most important

features of the table.

Two alternative table styles are often used for reporting ANOVAs. One approach

is similar to the table style used for t tests: The table reports the means, SDs, and ns for

the groups being compared, as well as the value of F for each group comparison with

the associated probability level. Values for h2 can also be shown, as shown in the exam-

ple of an ANOVA table in Table 6. This table summarizes the results of an experimental

study in which three treatment groups were compared with respect to pain control pro-

cedures following coronary surgery. The table shows means and SDs for the three

groups, F statistics, p values, and h2 for three pain-related procedure outcomes.

According to this table, two of the three ANOVAs were statistically significant beyond

the .05 level, but the F value for the first outcome (number of turns) was not significant.

An alternative is to present a full ANOVA summary table such as the one in

Table 7, which summarizes the results of our 2 � 2 ANOVA example on stress

scores. We have added a fictitious second outcome measure (coping scale scores) to

illustrate how information for two outcomes can be presented in the same table. The

summary table shows values for sums of squares, degrees of freedom, mean squares,

and F statistics for main effects and interactions for both dependent variables. This

approach is especially likely to be used in a multifactor ANOVA, because it is a con-

venient presentation of F tests for all factors and interactions. When such a table is

used to summarize ANOVAs, however, a separate table is needed to show means and
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TABLE 7 Example of an ANOVA Summary Table for a Two-Way ANOVA

Outcome and Source
of Variation

Sum of
Squares df Mean Square F p

Stress Scale Scores
Between groups 5.00 1 5.00 1.91 .19

Type of Treatment 0.00 1 0.00 0.00 1.00
Time of Treatment 20.00 1 20.00 7.62 .01
Type % Time Interaction 42.00 16 2.63

Within 67.00 19 3.53
Total

Coping Scale Scores

Between groups
Type of Treatment 54.00 1 54.00 6.08 .03
Time of Treatment 27.00 1 27.00 3.04 .23
Type % Time Interaction 35.00 1 35.00 3.94 .20

Within 142.00 16 8.88
Total 258.00 19 13.58

SDs. In Table 7, for example, there is a significant group difference for treatment

type on the Coping Scale, but we cannot tell from the table whether the coping

scores were better in the Music Therapy or the Relaxation Therapy group.

When ANOVA information is presented in tables, the text can be used to em-

phasize the main features. Here is an example of how the results from Table 7 could

be presented in the body of the report (we have added some information about the di-

rection of differences for the Coping Scale):

A two-way ANOVA was used to examine differences in the effects of the

two treatments and two administration times on patients’ self-reported

stress levels and ability to cope. ANOVA results, shown in Table 7, indicat-

ed that the time factor had no independent effect on scores on either the

Stress or Coping scales. There was, however, a significant type-by-time of

treatment interaction for the Stress Scale: In the evening only, Music

Therapy resulted in significantly lower stress scores than Relaxation

Therapy, F (1, 16) � 7.62, p � .01. Type of treatment, by itself, had no

significant effect on stress scores. With respect to coping, it was found that,

across both time periods, patients in the Music Therapy group scored

significantly more favorably than those in the Relaxation Therapy group,

F (1,16) � 6.08, p � .05. Time of treatment was unrelated to coping scores.

The text can also be used to expand on information that is less conveniently

presented in tables. For example, the results of multiple comparison tests that isolate

the group comparisons responsible for a significant F are often presented in the text,

although tables may also be used, as we shall see in the next section.

Graphs are a good way to call attention to significant interactions in multifac-

tor ANOVA. Figure 7, created within SPSS in the General Linear Model procedure,

presents a graph showing the type-of-treatment by time interaction from our two-

way ANOVA example. Graphic displays can also be effective in displaying means
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Research Example

The results of a nursing study that used ANOVAs and

multiple comparison procedures are summarized here to

further illustrate the use of ANOVA to address research

questions.

Study: “Association of adolescent physical and emotional

health with perceived severity of parental substance

abuse” (Gance-Cleveland, Mays, & Steffen, 2008).

Study Purpose: The purpose of this study was to exam-

ine the relationship between indicators of adolescent

health, and the adolescents’ perception of the severity of

parental substance abuse.

Methods: The study used data collected at baseline

from a group of high school students who were partic-

ipating in an intervention study for students with one

or more substance-abusing family member. A sample

of 121 students was recruited from a school-based

health center. The data collected at baseline included

scores on a 30-item scale (CAST) that measures exis-

tence and severity of substance-abuse problems in the

family. Students were divided into three groups on the

basis of total CAST scores, and this grouping variable

was the independent variable in the ANOVA: Low

severity (n � 11), moderate severity (n � 35), and high

severity (n � 75). Students also completed the Health

and Daily Living Inventory for Youth (HDLI-Y) scale,

which provided information about the students’ health

in the prior 3 months. The inventory yields scores on

nine subscales, including medical conditions, physical

symptoms, positive and negative mood, and five social

adjustment scales (e.g., health risk behavior, social in-

tegration).

Estimated Marginal Means of Stress Scores
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FIGURE 7 Graphic display for a two-way ANOVA: SPSS output.

from an RM-ANOVA, especially for highlighting time trends if the same people

have been measured at three or more points in time.

TIP: Be sure to include sufficient information in your report so that
future researchers can include your results in a meta-analysis. Even if you
include information about eta-squared, be sure to report means and SDs
for key outcomes so that estimated values for d can be computed.
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TABLE 8 Self-Reported Health of High School Students, by Perceived Severity 
of Parental Substance Abuse

Severity of Parental Substance Abuse Paired Comparisonsa

Health & Daily Living
Inventory-Youth 
(HDLI-Y) Subscale

Low
M (SD)
n � 11

Moderate
M (SD)
n � 35

High
M (SD)
n � 75 F p

L-M L-H M-H

Medical conditions 1.27 (1.10) 1.80 (1.02) 2.43 (1.20) 7.08 .001 — ** *

Physical symptoms 7.45 (3.42) 11.23 (3.56) 14.24 (4.19) 17.80 �.001 *** *** *
Negative mood 5.91 (2.12) 7.74 (3.33) 10.99 (3.50) 18.39 �.001 — *** ***
Positive mood 13.55 (3.01) 12.71 (3.04) 11.23 (3.60) 3.75 .03 — — —

aSignificance levels for Tukey’s HSD test comparing low-moderate (L-M), low-high (L-H), and moderate-high (M-H) paired comparisons: 

* p � .05, ** p � .01, *** p � .001

Adapted from information in Table 2 and in the report text of Gance-Cleveland et al., 2008.

Summary Points

• Analysis of variance (ANOVA) is used to draw

inferences about population means when there

are more than two means being compared.

Assumptions for basic ANOVA are analogous to

those for the t test—i.e., random sampling from

the population, a normal distribution for the de-

pendent variables in the population, and equality

of group variances.

• ANOVA tests the null hypothesis that the popula-

tion means are equal against the alternative hypoth-

esis that an inequality of population means exists.

• ANOVA involves the partitioning of variance of

the dependent variable into the components that

contribute to score variability.

• In its most basic form, ANOVA contrasts

between-group variance (variability from group

differences) to within-group variance (variability

among participants within groups).

• The ratio of the two sources of variation yields a

statistic—the F ratio—that can be compared to

tabled values for F distributions.

• To compute an F ratio, the sum of squares (sum

of squared deviations about a mean) for each

source of variation is divided by its respective de-

grees of freedom, to yield a mean square, which is

essentially a variance. Then, the mean square be-

tween groups (MSB) is divided by the mean square

within groups (MSW) to arrive at the F ratio.

Analysis: One-way ANOVA was used to compare the

three student groups with regard to means on the nine

subscales of the HDLI-Y. Significant F tests were fol-

lowed by pairwise comparisons using Tukey’s test, with

α set at .05. The researchers noted that the test for equal-

ity of variances was nonsignificant, which is important

given the unequal sizes of the three groups.

Results: The ANOVAs indicated significant group differ-

ences for four of the HDLI-Y subscales: medical condi-

tions, physical symptoms, negative mood, and positive

mood. Table 8 summarizes the ANOVA results (to con-

serve space, we show only the subscales with significant

results—in the report the table summarized all F tests).

For all four outcomes, adolescents in the high severity

group had the least favorable outcomes. Table 8 also sum-

marizes results from Tukey’s HSD test, displaying signifi-

cance levels comparing low-moderate, low-high, and

moderate-high pairings. It shows that the high severity

group differed significantly from both the low severity and

moderate severity groups on all but the positive mood

scale. The low and moderate severity groups differed from

each other only with regard to physical symptoms. The

table also shows a seemingly anomalous result: Despite

the overall significant F for the positive mood subscale, no

paired comparisons were significantly different. This like-

ly reflects the smaller ns in the paired comparisons.
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Exercises

The following exercises cover concepts presented in this chapter.

Answers to Part A exercises that are indicated with a dagger

(†) are provided here. Exercises in Part B involve computer

analyses and answers and comments are offered on the 

Web site.

PART A EXERCISES

A1. For each of the following situations, indicate whether

ANOVA is appropriate; if not appropriate, the reason why

not; and, if appropriate, the type of ANOVA that would be

used (i.e., one-way, repeated measures, etc.):

(a) The independent variable (IV) is age group—people in

their 60s, 70s, and 80s; the dependent variable (DV) is

health-related hardiness, as measured on a 20-item scale.

(b) The IVs are ethnicity (white, African American,

Hispanic, Asian) and birthweight status (� 2,500 grams

versus 2,500 grams); the DV is serum bilirubin levels.

(c) The IV is maternal breastfeeding status (breastfeeds

versus does not breastfeed); the DV is maternal bonding

with infant, as measured on a 10-item self-report scale.

(d) The IV is exposure to a special intervention (before

versus after exposure); the DV is myocardial oxygen

consumption.

(e) The IV is length of gestation (preterm versus term

versus postterm birth); the DV is epidural anesthesia

during labor (yes versus no).

(f) The IV is time since diagnosis of multiple sclerosis

(1 month versus 6 months versus 2 years); the DV is

psychological adaptation to the disease, as measure by

the Purpose-in-Life test.

A2. Suppose we wanted to compare the somatic complaints (as

measured on a scale known as the Physical Symptom

Survey or PSS) of three groups of people: nonsmokers,

smokers, and people who recently quit smoking. Using the

following data for PSS scores, do a one-way ANOVA to

test the hypothesis that the population means are equal:

Nonsmokers Smokers Quitters
19 26 37
23 29 32
17 22 27
20 30 41
26 23 38

• Analysis of variance can be used in a variety of

circumstances. A one-way ANOVA is used to

compare means for three or more independent

groups.

• A multifactor ANOVA is used when there are two

or more independent variables, called factors in this

context. The most common multifactor ANOVA is a

two-way ANOVA. Multifactor ANOVA tests for

both main effects (i.e., the effects of the independent

variables on the dependent variable) and interaction
effects (i.e., the effects of the independent variables

in combination).

• Repeated measures analysis of variance (RM-
ANOVA) is used for within-subjects designs,

when means are computed for the same people

three or more times. Additional assumptions for

RM-ANOVA include compound symmetry and

sphericity. These assumptions are usually tested

with Mauchly’s test for sphericity. Adjustments

to degrees of freedom are used when sphericity is

violated.

• If an ANOVA yields a significant F, multiple
comparison procedures (post hoc tests) must be

performed to determine the nature of the relation-

ship between the independent and dependent

variable. There are several alternative procedures,

such as Tukey’s HSD test and Fisher’s LSD test
(the protected t test), that help to identify the

group differences that contributed to the signifi-

cant F statistic.

• An effect size statistic called eta-squared (h2) can

be computed to estimate the strength of the rela-

tionship between the independent and dependent

variables in ANOVA. This statistic indicates the

proportion of variability in a dependent variable

accounted for by the independent variable.

• Eta-squared is used as the estimate of effect size in

power analyses for an ANOVA situation.

What are the means for the three groups? Compute the

sums of squares, degrees of freedom, and mean squares for

these data. What is the value of F? Using an alpha of .05, is

the F statistically significant?

A3. Using the data from question A2, compute three protected

t tests to compare all possible pairs of means. Also, for

α � .05, what is the value of LSD? Which pairs are signif-

icantly different from one another, using this multiple

comparison procedure?

A4. For the data in question A2, what is the value of h2? What

is the approximate estimated power for this ANOVA?

Explain what the h2 and estimated power indicate.

A5. Write a few sentences that could be used to describe the

results of the analyses from questions 2–4.

†

†

†

†
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A6. For each of the following F values, indicate whether the F
is statistically significant, at the specified alpha level:

(a) F � 2.80, df � 4, 40, a � .01

(b) F � 5.02, df � 3, 60, a � .001

(c) F � 3.45, df � 3, 27, a � .05

(d) F � 4.99, df � 2, 150, a � .01

(e) F � 2.09, df � 2, 250, a � .05

A7. Suppose we were interested in studying the self-esteem of

men versus women (Factor A) in two exercise status

groups—nonexercisers versus exercisers, Factor B—with

20 people in each of the four groups. Use the following in-

formation to compute three F tests, and determine which,

if any, is statistically significant at the .05 level:

Means: Male Male

exercisers: 39.0 nonexercisers: 37.0

Female Female 

exercisers: 34.0 nonexercisers: 29.0

All exercisers: 36.5 All nonexercisers: 33.0

All males: 38.0 All females: 31.5

Sums of Squares: SST � 1,190.50 SSW � 1,025.0

SSA � 74.50 SSB � 37.0 SSAB � 54.00

A8. Interpret the meaning of the F tests from question A7. (Note:

higher scores on the self-esteem scale mean higher self-

esteem.) Write a few sentences summarizing the results.

A9. Suppose we used a crossover design to test for differences

in bruising from subcutaneous sodium heparin injections

at three sites (arm, leg, and abdomen) in a sample of

15 medical–surgical patients. Surface area of the bruises

(in mm2) is measured 72 hours after each injection, which

are administered to sites in random order at 8-hour inter-

vals. Use the following information to compute the F sta-

tistic to determine if there were significant differences in

bruising by site, at the .05 level:

Means: Arm: 212.0 mm2 Leg: 99.0 mm2

Abdomen: 93.0 mm2

Sums of Squares: SSsite � 17,993.00 SSerror � 48,349.00

A10. This question was intentionally removed from this 

edition.

PART B EXERCISES

B1. For these exercises, you will be using the SPSS dataset

Polit2SetA, which contains a number of variables relat-

ing to material hardships and social–environmental

health risks. Eight variables in this file (from utilcut to

badstove, which are Variables #25–32) are responses to

a series of questions about current housing problems for

the women in this sample—for example, whether or not

they had their utilities cut off, had vermin in the house-

hold, had unreliable heat, and so forth. The variable

housprob (Variable #33) is a count of the total number of

times the women said “yes” to these eight questions. We

will use this variable to create groups of women with

different numbers of housing problems, so begin by run-

ning basic descriptive statistics on housprob, using the

SPSS Frequencies program with Descriptive Statistics.

Then answer these questions: (a) What is the range on

this variable, and what is the minimum and maximum

value? (b) What is the mean, median, and mode?

(c) Comment on the symmetry/skewness of the distribu-

tion. (d) What percentage of women had zero problems?

One problem? What does the frequency distribution sug-

gest about forming groups on the basis of number of

housing problems?

B2. In this exercise, you will create a new variable (call it

hprobgrp) that divides the sample into three groups based

on number of housing problems. The new variable will be

coded 1 for no housing problems, 2 for one housing prob-

lem, and 3 for two or more housing problems. Click

Transform (upper tool bar) ➜ Recode ➜ Into Different

Variables. This opens a dialog box where you can enter the

variable housprob into the field for Numeric Variable.

Then, on the right, type in the name of the new variable

hprobgrp, and then click the pushbutton Change, which

will insert the new variable into the first field. Now click

on Old and New Values, which brings up a new dialog box.

In the field for Old Value, enter 0 (zero problems), then on

the right under New Value, type in 1 (for code 1 in the new

variable), and click Add. Repeat this process, this time

using the code of 1 for housprob and 2 for hprobgrp, and

the click Add again. Finally, on the left click Range (for

range of values), and enter 2 and 8—all codes between 2

and 8 for the variable housprob. Then enter 3 for New

Variable, and click Add and then Continue. Then click

OK, and the process is complete. The new variable will be

added as the last variable in the file. Add labels for the

codes to make reading output easier by clicking on the

Variable View tab at the bottom of the screen. Then run

Frequencies for hprobgrp, and determine how many

women are in each of your three housing problems groups.

Check to make sure you have correctly created the new

variable by comparing the output with output from

Exercise B1. Comment on how the distribution of values

could affect decisions relating to the homogeneity of vari-

ance assumption for ANOVA.

B3. Now run a one-way ANOVA with hprobgrp as the inde-

pendent (group) variable, using the variable satovrl (overall

satisfaction with material well-being, Variable #43) as the

outcome variable. This variable is a summated rating scale

variable for women’s responses to their degree of satisfac-

tion with four aspects of their material well-being—their

housing, food, furniture, and clothing for themselves and

†

†

†

†

†

†

†
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A1. a. appropriate—one-way ANOVA;

b. appropriate—two-way (multifactor) ANOVA;

c. inappropriate—there are only two groups, an independent groups t test would be appropriate (although technically an F test

could be used and would yield the same results);

d. inappropriate—there are only two paired groups, a dependent groups t test would be appropriate

e. appropriate—dependent variable is nominal level; 

f. appropriate; if the same people were measured three times, RM-ANOVA; if the time-since-diagnosis groups are different peo-

ple, one-way ANOVA

A2. The group means are: Nonsmokers � 21.0; Smokers � 26.0; Quitters� 35.0; the grand mean � 27.33; SSB � 503.33, SSW �
222.00; dfB � 2, dfW � 12; MSB � 251.67, MSW � 18.50; F (2, 12) � 13.60, significant at the .05 level.

Analysis of Variance

their children. Each item was coded from 1 (very dissatis-

fied) to 4 (very satisfied), so the overall score for the four

items could range from a low of 4 (4 � 1) to 16 (4 � 4). To

run the one-way analysis, click Analyze ➜ Compare Means

➜ Oneway. In the opening dialog box, move satovrl into the

Dependent List, and hprobgrp into the slot for Factor. Click

the Options pushbutton, and click Descriptives and

Homogeneity of Variance, then Continue. Next, click the

Post Hoc pushbutton and select LSD, Scheffe, and Tukey.

Click Continue, then OK, and answer these questions:

(a) What are the mean levels of satisfaction in the three

groups? Which group is most dissatisfied? (b) Can the null

hypothesis regarding equality of variances in the three popu-

lations be rejected? (c) What was the value of the F statistic

that tested the equality of mean levels of satisfaction in

the three groups? (d) What were the degrees of freedom?

(e) What was the probability level for the F statistic? Can

the null hypothesis for equality of means be rejected?

(f) According to Tukey’s HSD test, were any group means

significantly different from any others? If yes, which ones?

(g) Were our statistical decisions sensitive to the particular

multiple comparison test we used? In other words, would we

have come to different conclusions if we had used the

Scheffe or LSD test?

B4. Do another one-way ANOVA for the same independent

variable (hprobgrp) and dependent variable (satovrl), this

time using Analyze ➜ Compare Means ➜ Means. On the

second dialog box, click the box for ANOVA table and eta.

What is the value of eta-squared for this analysis? Would

this be considered a small, moderate, or large effect? How

would you interpret this effect size index?

B5. For the next analysis, run a two-way ANOVA in which the

dependent variable will again be satovrl, the women’s over-

all degree of satisfaction with their material well-being. The

two dichotomous independent variables will be whether or

not the woman was working at the time of the interview

(worknow, Variable #8) and whether or not she was receiv-

ing cash welfare assistance (cashwelf, Variable #19), both

coded 1 for “yes” and 0 for “no.” Run two-way ANOVA

through Analyze ➜ General Linear Model ➜ Univariate. In

the opening dialog box, move satovrl into the Dependent

List, and move worknow and cashwelf into the Fixed Factors

list. Click the pushbutton for Model and unclick “Include in-

tercept in model” at the bottom of the next dialog box. Then

click Continue. Next, click the pushbutton Plots on the initial

dialog box. Move worknow into the Horizontal Axis slot,

and then move cashwelf into the Separate Lines slot. Click

the Add pushbutton, then Continue. Next, click the Options

pushbutton on the original dialog box and select the follow-

ing options: Descriptives, Estimates of Effect Size, and

Homogeneity Tests. Click Continue, then OK, and answer

the following questions: (a) What are the null hypotheses

being tested? (b) Which of the four groups created by the

2 � 2 design was, on average, least satisfied with their hous-

ing? How many women were in that group? (c) Which group

was most satisfied? How many women were in that group?

(d) Are the variances homogeneous? (e) In the ANOVA,

which (if either) main effect was statistically significant?

What were the probability levels? (f) What were the values of

eta-squared for the main effects? How would you describe

these effect sizes? (g) Was the interaction effect significant?

What was the probability level for the interaction? Describe

interaction effects as displayed on the Profile Plot.

B6. Run one-way ANOVAs for two outcomes in the Polit2SetA

dataset: overall satisfaction with material well-being, which

is already completed if you did Exercise B1 (satovrl), and rat-

ing of neighborhood as a good place to live and raise children

(nabrqual, Variable #18). Be sure to look in the codebook or

in the file itself to see how nabrqual was coded. Use the vari-

able created earlier for groups based on number of housing

problems as the independent variable (i.e., hprobgrp). In the

One-Way ANOVA procedure in SPSS, insert the two out-

come variables in the list of Dependent Variables, and

hprobgrp in the Factor slot. Use the SPSS Means procedure

to determine values of eta-squared. When you have run these

analyses, create a table to present your results, using Table 6

as a model. Then write a paragraph summarizing the results.

†

†

†

170



Analysis of Variance

A3. t1-2 � 1.84; t1-3 � 5.15; t2-3 � 3.31; LSD � 5.93. Quitters are significantly different from both nonsmokers and smokers.

Smokers are not significantly different from nonsmokers.

A4. n2 � .69; estimated power is greater than .99. There is a strong relationship between smoking status and somatic complaints,

and the risk of a Type II error is negligible.

A6. a. not significant; b. not significant;

c. significant; d. significant; e. not significant

A7. MSA � 74.50; MSB � 37.00; MSAB � 54.00; MSW � 13.49; FA � 5.52; FB � 2.74; FAB � 4.00. With df � 1 and 76 for all

three tests, the tabled value of F is 3.96. Thus, the F tests for sex differences (Factor A) and for the interaction (AB) are both sig-

nificant, but the F test for differences by exercise status is not.

A9. dfsite � 2; dferror � 28; MSsite � 8,996.50; MSerror � 1,726.75; the computed value of F for within-subjects is 5.21. With df �
2 and 28, the tabled value of F at α � .05 is 3.34. Thus, we reject the null hypothesis that the three site means are equal.

A10. a. 9 b. 20 c. 90 d. 15 e. 319
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GLOSSARY
Compound symmetry An assumption in repeated measures analyses, stipulating the homogeneity of within-treatment variances

and homogeneity of covariance between pairs of within-treatment levels.

Crossover design An experimental design in which participants are exposed to more than one condition or treatment, in random

order.

Duncan’s multiple-range test A post hoc test used following a significant ANOVA to test differences between all possible pairs

of means.

Eta-squared A statistic calculated (often in connection with ANOVA), to indicate the proportion of variance in the dependent

variable explained by the independent variables, analogous to R2 in multiple regression; computed by dividing the sum of squares

between groups by the total sum of squares.

Factorial design An experimental design in which two or more independent variables are simultaneously manipulated, permitting

an analysis of the main effects of the independent variables, plus the interaction effects.

Grand mean The overall mean for a set of scores, for all groups.

Greenhouse-Geisser epsilon A widely used correction factor for addressing violations of the sphericity assumption in repeated

measures analyses.
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Huynh-Feldt epsilon A widely used correction factor for addressing violations of the sphericity assumption in repeated measures

analyses.

Interaction effect The effect of two or more independent variables acting in combination (interactively) on a dependent variable.

Mauchly’s test A test of the assumption of sphericity in repeated measures analyses.

Mean square In an ANOVA context, the term used to designate the variance, often abbreviated MS; calculated by dividing a sum

of squares by its respective degrees of freedom.

Multifactor ANOVA An analysis of variance used to test the relationship between two or more independent variables and a de-

pendent variable simultaneously.

Multiple comparison procedures Statistical tests, normally applied after preliminary results indicate overall statistically signifi-

cant group differences, that compare different pairs of groups; also called post hoc tests.

Partitioning variance The process of dividing up the total variance in the dependent variable into its contributing components

(e.g., between-groups variance versus within-groups variance).

Planned comparisons Comparisons between group means in an ANOVA or regression analysis, for comparisons that are speci-

fied at the outset of the research.

Randomized block design An experimental design involving random assignment to treatment groups within a “block” that is a

nonexperimental factor (e.g., randomly assigning males and females separately to treatment conditions).

Scheff’ test A post hoc test used following a significant ANOVA to test differences between all possible pairs of means; a conser-

vative test that tends to err on the side of underestimating significance.

Sphericity The assumption in repeated measures analyses that the variance of population difference scores for any two time peri-

ods is the same as the variance of population differences for any other two time periods.

Sum of squares The sum of squared deviation scores, often abbreviated SS.

Two-way ANOVA An analysis of variance used to test the relationship between two independent variables and a dependent vari-

able simultaneously.

F ratio The statistic obtained in several statistical tests (e.g., ANOVA) in which variation attributable to different sources (e.g., be-

tween groups and within groups) is compared.

Analysis of variance (ANOVA) A statistical procedure for testing mean differences among three or more groups by comparing

the variability between groups to the variability within groups.

Fisher’s least significant difference (LSD) test A post hoc test, also known as the protected t test, used following a significant

ANOVA to test differences between all possible pairs of means; LSD is an acronym for least significant difference.

Tukey’s honestly significant different (HSD) test A post hoc test used following a significant ANOVA to test differences be-

tween all possible pairs of means.

Main effect The simple effect of an independent variable on the dependent variable, independent of other factors in the analysis.

Model A symbolic representation of concepts or variables, and interrelationships among them; in statistics and mathematics, rep-

resented by an equation.

One-way ANOVA An analysis of variance used to test the relationship between a single independent variable involving three or

more groups and a dependent variable.

Post hoc test A test for comparing all possible pairs of groups following a significant test of overall group differences (e.g., a sig-

nificant ANOVA).

Protected t test A post hoc test used following a significant ANOVA to test differences between all possible pairs of means; also

known as Fisher’s LSD (least significant difference) test.

Repeated measures analysis of variance (RM-ANOVA) A statistical procedure for testing mean differences in a within-subjects

design involving three or more conditions/observation periods or involving both within-subjects and between-subjects factors (i.e.,

a mixed design).
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In this chapter we examine several nonparametric tests.

THE CHI-SQUARE TEST

The nonparametric test that researchers most often use is the chi-square test. The chi-square statistic is used in

several applications, but we focus primarily on the most widely-used application known as the chi-square test
of independence or Pearson’s chi-square. This test is designed to make inferences about the existence of a

relationship between two categorical variables that are crosstabulated in a contingency table.

Suppose we wanted to examine whether there were differences in the rate of complications for patients

receiving intravenous medications with a heparin lock in place, without changing it, for 72 hours versus 96 hours.

Patients are randomly assigned to the two groups, and then the incidence of any complication (e.g., blocking,

leaking, purulence, phlebitis, etc.) is recorded. Table 1 presents fictitious data for 100 patients (50 in each

group), arrayed in a 2 � 2 contingency table. The table shows that there was a higher rate of complications in

the 96-hour group (22%) than in the 72-hour group (18%). The research question is whether the observed group

differences in the proportion of people with complications (the dependent variable) reflects the effect of length

of time the heparin locks were in place (the independent variable), or whether differences reflect random sam-

pling fluctuations. The chi-square test would be used to address this question.

Chi-Square 
and Nonparametric Tests

The Chi-Square Test
The Null and Alternative Hypotheses 

for the Chi-Square Test

Assumptions and Requirements 

for the Chi-Square Test

General Logic of the Chi-Square Test

Calculation of the Chi-Square Statistic

Nature of the Relationship

Magnitude of Effects in Contingency Tables

Power Analysis

Other Nonparametric Tests
The Mann-Whitney U test

Kruskal-Wallis Test

McNemar Test

Wilcoxon Signed-Ranks Test

Cochran’s Q Test

Friedman Test

Research Applications of Nonparametric Tests
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Presentation of Nonparametric Tests 

in Research Reports

Research Example
Summary Points
Exercises

From Chapter 8 of Statistics and Data Analysis for Nursing Research, Second Edition. Denise F. Polit. Copyright © 2010 by

Pearson Education, Inc. All rights reserved.
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TABLE 1 Hypothetical Data for Heparin Lock Chi-Square Example

Complication 
Incidence

Heparin Lock Placement Time Group

72 Hours 96 Hours Total

Had Complications 9 
(18.0%)

11 
(22.0%)

20 
(20.0%)

Had No Complications 41 
(82.0%)

39 
(78.0%)

80 
(80.0%)

Total 50 50 100

The Null and Alternative Hypotheses for the Chi-Square Test

The null hypothesis for the chi-square test stipulates the absence of a relationship

between the independent and dependent variable. The null hypothesis is stated in

terms of the independence of the two variables. For our current example, the null and

alternate hypotheses may be stated as follows:

H0: Complication incidence and length of heparin lock placement 

are independent (not related)

H1: Complication incidence and length of heparin lock placement 

are not independent (they are related)

Assumptions and Requirements for the Chi-Square Test

The chi-square test is used when both the independent and the dependent variable

are measured on a nominal scale—that is, when variables can best be described

through percentages, rather than means. Chi-square can also be used for ordinal-

level variables if there are only a few categories (e.g., very low birthweight, low

birthweight, normal birthweight). The chi-square test could also be applied to inter-

val or ratio data that have been grouped into categories. For example, the variable

age (a ratio-level variable) could be recoded as an ordinal-level variable with three

categories: under 30, 30–39, and 40 or older. When researchers have interval-level or

ratio-level data, however, it is often preferable to use more powerful parametric tests,

such as ANOVA or a t test, with the raw ungrouped data.

Like parametric tests for between-subjects designs, the chi-square test assumes

that the observations are randomly and independently sampled from the population

of interest. Each participant must qualify for one and only one cell of the contin-

gency table.

Unlike the other tests, the chi-square test does not make any assumption about

the distribution of values in the population, nor about the homogeneity of group vari-

ances. One further issue, however, concerns sample size: Chi-square requires that the

expected frequency of each cell in the contingency table be greater than zero.

(Expected frequencies are explained later.) In fact, it is often recommended that the

expected frequency of each cell be at least 5, especially if the number of cells is

small, as in a 2 � 2 contingency table. When there are a large number of cells, the

chi-square test will yield valid results if no more than 20% of the cells have expect-

ed frequencies under 5—so long as all cells have an expected frequency greater than

0. For example, in a 5 � 4 contingency table, four cells (20% � 20) could have expect-

ed frequencies between 1 and 4. Note that the cell size requirement involves

expected frequencies, not observed ones. However, as the size of the overall sample

increases, so do expected frequencies.
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Chi-Square

Chi-Square Distribution for a
2 � 2 Contingency Table (df = 1)

Chi-Square Distribution for a 
5 � 3 Contingency Table (df = 8)

5%

1%

0

p

2 4 6 8
Chi-Square

5%

1%

0

p

2 4 6 8 10 12 14 16 18 20

FIGURE 1 Example of chi-square distributions with different degrees of freedom.

TIP: If chi-square is invalid for a 2 � 2 table because of low expected
frequencies, an alternative test known as Fisher’s exact test can be used.
The computations for this test are complex, but most computer programs
for chi-square analysis compute Fisher’s exact test automatically.

General Logic of the Chi-Square Test

The chi-square test contrasts observed frequencies in each cell of a contingency table

(i.e., the frequencies observed within the actual data) with expected frequencies.

Expected frequencies are the number of cases that would be found in each cell if the

null hypothesis were true—that is, if the two variables were totally unrelated. In our

example, if the length of heparin lock placement had no effect on the rate of complica-

tions, the percentages should be identical in the two groups. Because 20% of the over-

all sample of patients had complications, we would expect that 20% in both groups

(20% � 50 � 10 patients) would experience complications if the null hypothesis were

true. Similarly, 80% of the patients did not have complications, so the expected

frequency for the two bottom cells of Table 1 would be 40 (80% � 50).

If the actual, observed frequencies in a crosstabs table are identical to the ex-

pected frequencies, the value of the chi-square statistic will equal 0, which is the

population value of chi-square for two unrelated variables. A chi-square based on

sample data will often not equal exactly 0, even when the variables are not related,

because of sampling error. Thus, as with other statistics, the computed value of the

chi-square statistic must be compared to a critical value in a table, to determine if the

value of the statistic is “improbable” at a specified significance criterion. The critical

tabled values are based on sampling distributions of the chi-square statistic.

There are different chi-square distributions depending on degrees of freedom,

which in turn depends on the number of categories for each variable. (We discuss the

calculation of degrees of freedom subsequently.) Figure 1 presents examples of two

chi-square distributions, for tests involving a 2 � 2 (4-cell) contingency table and a
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5 � 3 (15-cell) contingency table. The figure shows the areas corresponding to 5%

and 1% of these distributions, which constitute the critical regions for the rejection

of the null hypothesis with � � .05 and .01, respectively.

Calculation of the Chi-Square Statistic

The chi-square statistic is relatively easy to compute manually. The first step is to

calculate the expected frequencies for each cell of the contingency table. The follow-

ing formula can be used:

where E � expected frequency for a cell

Rf � observed frequency for the entire row the cell is in

Cf � observed frequency for the entire column the cell is in

N � total sample size

Let us apply this formula to the first cell in our example of heparin lock place-

ment groups (Table 1):

This is consistent with our earlier discussion, in which we noted that 20% of

the sample had complications, so 20% of each group (n � 10) would be expected to

have complications if the null hypothesis were true. Thus, the expected frequency for

the two upper cells is 10, while that for the two bottom cells is 40.

We can now compute the chi-square statistic, which involves comparing

expected and observed frequencies in each cell. The formula for chi-square is:

where x2 � chi-square

O � observed frequency for a cell

E � expected frequency for a cell

Σ � the sum of the (O � E)2/E ratios for all cells

To compute x2, the expected frequency for each cell is subtracted from the

observed frequency, the result is squared, and then this value is divided by the cell’s

expected frequency. When these calculations are performed for each cell, all values

are summed to yield a value of x2 (chi-square1). Table 2 works through the compu-

tations for our heparin lock example. In this example, the value of x2 is 0.25.

The computed value of x2 must be compared to a tabled value for the

established level of significance, which we will set at .05. To use the chi-square

x2 � ©

1O � E 2 2
E

E �
50 � 20

100
�

1000

100
� 10

E �
Rf � Cf

N

1 Although widely referred to as the chi-square test, the test is sometimes called chi-squared, which is

actually more appropriate because the symbolic representation for the test is the Greek letter chi,

squared.
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TABLE 2 Calculation of the Chi-Square Statistic for Heparin Lock Data

Cell

Observed
Frequency 

O

Expected
Frequency 

E (O � E) (O � E)2 (O � E)2/E

Complication, 72 Hr. 9 10 �1 1 0.100
Complication, 96 Hr. 11 10 1 1 0.100

No Complication, 72 Hr. 41 40 1 1 0.025
No Complication, 96 Hr. 39 40 �1 1 0.025

�2 � 0.250

table, we must first compute degrees of freedom. For the chi-square test, the formu-

la is:

df � (R � 1)(C � 1)

where R � number of rows

C � number of columns

In our example, both R and C are equal to 2, so degrees of freedom is (2 � 1)

(2 � 1), which equals 1. Since our calculated value of chi-square is considerably less

than 3.84, we accept the null hypothesis that complication rates are unrelated to he-

parin lock placement time.

Like most statistics, chi-square analysis is most often done by computer.

Figure 2 presents output from an SPSS run using Analyze ➜ Descriptive statistics ➜
Crosstabs with the fictitious heparin lock data from Table 1. Panel A of this printout

shows the descriptive crosstab table. Each cell of this 2 � 2 table contains informa-

tion on the frequency (count) and column percentage (% within placement time) for

that cell. We also instructed the computer to print the expected count for each cell.

Thus, for the first cell there were nine patients with complications in the 72-hour

heparin lock group, the expected frequency was 10, and the percentage with compli-

cations in the 72-hour group was 18.0%.

Panel B of Figure 2 presents the results of the chi-square tests. The basic chi-

square statistic (Pearson chi-square) is shown in the first row, with a computed value

of .250, which is the value we obtained with manual calculation. With 1 df, the proba-

bility of obtaining this value of chi-square is .617, which is not statistically significant.

Some of the other entries in Panel B will be mentioned briefly, although they

are not often used in nursing studies. When both variables in a contingency table have

only two levels (i.e., when there is a 2 � 2 analysis, as in our example), the sampling

distribution of the chi-square statistic corresponds less closely to a chi-square distri-

bution than when there are more levels for at least one variable. Because of this, a

correction factor known as Yates’ continuity correction is sometimes used in com-

puting chi-square for a 2 � 2 table. There is some disagreement regarding the use of

Yates’ correction (see Jaccard & Becker, 2001), but it is routinely calculated in SPSS

for 2 � 2 tables. The correction involves subtracting 0.5 from the absolute value of

O–E for each cell before this value is squared, thus making the value of the statistic

smaller. Thus, one reason this correction is controversial is that it reduces power.
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C Symmetric Measures

Value Approx. Sig.

Nominal by Nominal Phi

Cramer’s V

N of Valid Cases

�.050

.050

100

.617

.617

Crosstabs
A Had complications? * Heparin lock placement time crosstabulation

Heparin Lock Placement Time

72 
Hours

96 
Hours Total

Had Yes Count

Complications? Expected count

% within Heparin lock placement time

9

10.0

18.0%

11

10.0

22.0%

20

20.0

20.0%

No Count

Expected count

% within Heparin lock placement time

41

40.0

82.0%

39

40.0

78.0%

80

80.0

80.0%

Total Count

Expected count

% within Heparin lock placement time

50

50.0

100.0%

50

50.0

100.0%

100

100.0

100.0%

B Chi-Square Tests

Value df
Asymp. Sig. 
(two-sided)

Exact Sig. 
(two-sided)

Exact Sig. 
(one-sided)

Pearson Chi-Square

Continuity Correctionb

Likelihood Ratio

Fisher’s Exact Test

Linear-by-Linear Association

N of Valid Cases

.250a

.062

.250

.248

100

1

1

1

1

.617

.803

.617

.619

.803 .402

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 10.00.
b. Computed only for a 2 x 2 table

FIGURE 2 SPSS printout of a chi-square analysis.

When the continuity correction is applied to the data in our heparin lock example, the

value of x2 is reduced from 0.25 to 0.063, as shown in Panel B of Figure 2. In both

cases, the null hypothesis would be accepted, but sometimes the application of Yates’

correction alters a decision from rejection to acceptance of the null. If expected fre-

quencies are large, the correction factor should probably not be applied.

When SPSS executes a command to produce the chi-square statistic, it also

computes other similar statistics. For example, one is called the likelihood ratio chi-
square, which is an alternative method of testing the null hypothesis of lack of rela-

tionship between rows and columns of a crosstab table. It is computed differently

than the Pearson chi-square, but it is interpreted the same way and usually yields the
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same results—as is the case with our heparin lock example. This and the other statis-

tics that are generated along with Pearson’s chi-square statistic are explained in

SPSS manuals (e.g., Norus̆is, 2008), but they are rarely reported. 

Example of a chi-square analysis:

Park and colleagues (2008) studied factors related to lymphoedema among

patients with breast cancer. They used chi-square tests to test associations with risk

factors measured on a nominal scale. For example, they found that patients with

lymphoedema were significantly more likely than those without it to be over-

weight or obese (x2 � 10.77, df � 2, p � .001).

Nature of the Relationship

When the contingency table is 2 � 2 and a chi-square test has led to the rejection of the

null hypothesis, the direction of the relationship between the two variables can be de-

termined by inspecting the percentages. For instance, if our heparin lock example had
yielded a significant chi-square value, we would conclude that complications were

greater when the heparin locks were left in place for 96 hours than when they were in

place only 72 hours because the complication rate was higher in the 96-hour group.

Like ANOVA, the chi-square test applies to data for the two variables taken as a

whole. For tables larger than 2 � 2, a significant chi-square provides no information

regarding which cells are responsible for rejecting the null hypothesis. There are

multiple comparison procedures for chi-square tests just as for ANOVA, but the math-

ematics are complex and these procedures are not usually available in widely used sta-

tistical software packages. We can, however, gain descriptive insight into the nature of

the relationship by examining the components contributing to the value of x2—i.e., the

values shown in the last column of Table 2. In a 4 � 2 table, for example, there would

be eight such components, and those with the greatest values are the ones dispropor-

tionately contributing to a high x2. These components would help us to better under-

stand which cells are most responsible for the rejection of the null hypothesis.

Magnitude of Effects in Contingency Tables

The chi-square statistic provides information about the existence of a relationship

between two nominal-level variables, but not about the magnitude of the relation-

ship. It may be useful, in interpreting the results, to have a measure of the strength of

the association.

Several alternative indexes have been proposed. In a 2 � 2 table, one alterna-

tive is the phi coefficient (f). The formula for � is based directly on the computed

chi-square statistic:

In our heparin lock example, the phi coefficient would be:

This same value for phi is shown in Panel C of Figure 2, which shows the SPSS

output for the heparin lock data.

f � B
0.25

100
� 2.0025 � .05

f � B
x2

N
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The phi coefficient usually ranges from 0 to 1, and can be interpreted similar to

a Pearson r. The larger the value of �, the stronger the relationship between the vari-

ables. Thus, a � of .05 indicates a weak relationship between placement time groups

and incidence of complications.2

When a crosstabs table is larger than 2 � 2, phi is not appropriate for measur-

ing the strength of the relationship between the two variables, but a statistic called

Cramér’s V can be used. The formula for V is as follows:

In this formula, k is the smaller of either R (number of rows) or C (number

of columns). In our heparin lock example, k � 2, so that the formula for V in this

case is identical to the formula for �—and, as shown in Panel C of Figure 2, the

value of V as calculated in SPSS is .05 for both indexes. As with �, the V statistic can

range from 0 to 1, and larger values indicate a stronger relationship between the vari-

ables. For tables that are bigger than 2 � 2, a large value for the V statistic means that

there is a tendency for particular categories of the independent variable to be

associated with particular categories of the dependent variable.

Increasingly, risk indexes are being used to communicate magnitude of effects,

especially for outcomes that are dichotomous. In a 2 � 2 situation, the odds ratio

(OR) and relative risk (RR) are most often used, and these are both popular as effect

size indexes in meta-analysis. As you know, the odds ratio can be computed within

SPSS as part of the Crosstabs procedure. In our present example, the OR for compli-

cations with a 96-hour placement (versus 72-hour placement) is 1.285, and the rela-

tive risk index is 1.222 (calculations not shown).

In the present example, the 95% CI around the OR of 1.285 ranged from .480

to 3.437. This interval includes the OR of 1.0, which indicates the possibility that

placement time and complications were unrelated—consistent with the decision to

retain the null hypothesis.

TIP: Within the context of an odds ratio, the null hypothesis being tested
is that the odds ratio is 1.0. The 95% CI around the odds ratio thus
provides information about the likelihood that the null hypothesis is
correct. The null hypothesis regarding the lack of relationship between a
risk factor and an event (outcome) can also be tested with tests of
conditional independence, such as Cochran’s chi-square and Mantel-
Haenszel’s chi square, both of which can be run within the Crosstabs
procedure in SPSS. In our present example, both tests were nonsignificant.

Power Analysis

Cramér’s V statistic can be used as the effect size index in a power analysis for

contingency tables of any size. As you know, power analysis is most often used in

planning a study to estimate how large a sample is needed. For this application,

V � B
x2

N 1k � 1 2

2 In SPSS, a minus sign is added to phi in 2 � 2 tables if the value of a Pearson correlation between the

two variables would be negative. This occurred in this example (Figure 2). Phi can, in theory, be greater

than 1 but usually is not.
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researchers need to have an estimate of Cramér’s V. Post hoc power analysis is also

used sometimes to interpret results, especially when the chi square statistic is non-

significant.

A convenient way to estimate sample size needs for a 2 � 2 design is to use

Table 3 or one of the many interactive power analysis calculators on the Internet

(e.g., http://statpages.org/proppowr.html or http://www.stat.uiowa.edu /~rlenth/
Power/). Table 3 can be used when you estimate the proportions in the two popula-

tions, and when you use the standard criteria of a� .05 and power � .80. For exam-

ple, if we estimated complication rates for the 72-hour placement population to be

.15 and the complication rate for the 96-hour placement population to be .20, this

table indicates at the intersection of these two proportions that we would need 945

patients per group. (Although not shown in this table, for the actual obtained propor-

tions of .18 and .22, we would need 1,618 patients per group.)

As Table 3 shows, sample size needs for testing differences between two pro-

portions is influenced not only by expected differences in proportions (e.g., .60 in

one group versus .40 in another, a .difference of .20), but also by the absolute values

of the proportions. For any given difference in proportions, sample size needs are

smaller at the extremes than near the midpoint. A .20 difference is easier to detect if

the proportions are .10 and .30 than if they are near the middle, such as .40 and .60.

Table 3 tells us that we would need 71 participants per group in the first situation,

compared to 107 per group in the second. Because of this fact, it is difficult to offer

guidelines for small, medium, and large effects in a chi-square context. We can, how-

ever, give examples of differences in proportions that conform to the conventions in

a 2 � 2 situation:

Small: .05 versus .10, .20 versus .29, .40 versus .50, .60 versus .70, .80 versus .87

Medium: .05 versus .21, .20 versus .43, .40 versus .65, .60 versus .82, .80

versus .96

Large: .05 versus .34, .20 versus .58, .40 versus .78, .60 versus .92, .80 versus .96

If, for example, the expected proportion for a control group were .40, we would

need about 385, 70, and 24 per group if an intervention group was expected to have

higher proportions, and the effect was expected to be small, medium, and large, respec-

tively. Researchers are, as always, encouraged to avoid using these “tee-shirt-size”
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TABLE 3 Sample Size Estimatesa for Each Group, Testing Differences 
in Two Proportions, for � � .05 and Power � .80

Proportion for: ➜ Group 2b (P2)

Group 1

(P1)� .00 .05 .10 .15 .20 .25 .30 .35 .40 .45 .50

.05 190 —

.10 92 474 —

.15 60 159 725 —

.20 44 88 219 945 —

.25 34 58 112 270 1133 —

.30 27 43 71 133 313 1290 —

.35 23 33 50 82 151 348 1416 —

.40 19 27 38 57 91 165 376 1510 —

.45 16 22 30 42 62 98 175 395 1573 —

.50 14 18 24 32 45 65 103 182 407 1604 —

.55 12 16 20 26 34 47 68 106 186 411 1604

.60 11 14 17 21 27 36 48 69 107 186 407

.65 10 12 14 18 22 28 36 49 69 106 182

.70 9 10 12 15 18 22 28 36 48 68 103

.75 8 9 11 13 15 18 22 28 36 47 65

.80 7 8 9 11 13 15 18 22 27 34 45

.85 6 7 8 9 11 13 15 18 21 26 32

.90 5 6 7 8 9 11 12 14 17 20 24

.95 5 5 6 7 8 9 10 12 14 16 18
1.00 4 5 5 6 7 8 9 10 11 12 14

aSample sizes are for each group, and assume equal ns for the two groups being compared.

bFor Group 2 proportions (P2) greater than .50, use the row corresponding to 1.0 � P2 and the column corresponding to 1 � P1. For example, 

if P1 � .85 and P2 � .75, use the column for .15 and the row for .25.

conventions, if possible, in favor of more precise estimates from prior studies. If re-

liance on these conventions cannot be avoided, conservative estimates should be used

to minimize the risk of wrongly retaining the null hypothesis.

TIP: The chi-square test of independence, just discussed, is the most
commonly used application of the chi-square statistic. Another situation
calls for the chi-square goodness-of-fit test, which is used to draw
inferences when there is one nominal-level variable and we had theoretical
or other reasons for hypothesizing a specific population proportion.
In other words, this goodness-of-fit test is similar to a one-sample t test.

OTHER NONPARAMETRIC TESTS

Nonparametric tests are generally used either when the dependent variable is mea-

sured on a nominal or ordinal scale or when the assumptions for more powerful para-

metric tests cannot be met, especially when sample sizes are small. There are dozens

of nonparametric tests for different situations, only a handful of which are covered

here. Those interested in a fuller coverage of nonparametric tests, or in more
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TABLE 4 Decision Matrix for Selected Nonparametric and Parametric Tests

Type of Design Number 
of Groups

Measurement Level of Dependent Variable

Nominal Ordinal Interval or Ratio

Independent Groups

(Between-subjects)

2 Chi-square test Mann-Whitney U test t test

3 Chi-square test Kruskal-Wallis test ANOVA

Dependent Groups 
(Within-subjects)

2 McNemar test Wilcoxon signed-ranks test Paired t test
3 Cochran’s Q Friedman test RM-ANOVA

comprehensive statistical tables for the tests covered, should consult such textbooks

as those by Sprent and Smeeton (2007) or Conover (1999).

Table 4 summarizes the tests covered in this chapter, and indicates situations in

which these tests are appropriate. For situations in which a parametric test such as

the t test or ANOVA cannot be used because underlying assumptions are presumed

to be violated, the nonparametric ordinal-level test in the same row as the parametric

test (listed in the last column of this table) would usually be used. For example, if an

independent groups t test is inappropriate because the distribution of the dependent

variable is markedly nonnormal and N is small, the Mann-Whitney U test would

probably be used to test group differences.

Most nonparametric tests described in this section are rank tests. Whereas

parametric tests focus on group differences in population means, rank tests deal with

group differences in location (distributions of scores) between populations, based on

ranks. Significance tests for rank tests are used either when the original data are in

the form of rankings or, more typically, when a set of scores have been converted

into ranks for the purpose of performing the test. To illustrate the basic ranking

process, consider the following five heart rate values and their corresponding ranks:

Heart Rate Rank

130 5

93 2

112 4

89 1

101 3

In this example, the person with the lowest heart rate is ranked 1, and the person

with the highest heart rate is ranked 5. When a tie occurs, the scores are assigned the

average of the ranks. Thus, if the fifth person in the above list had a heart rate of 112,

both scores of 112 (participants 3 and 5) would be ranked 3.5.

TIP: We could have reversed the ranking so that the lowest heart rate had
the highest ranking, and so on—the computational procedures for rank
tests would be the same either way. It is usually easier to interpret the
results if low ranks are associated with low data values and high ranks are
associated with high values.
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The Mann-Whitney U Test

The Mann-Whitney U test is a nonparametric analog of the independent groups 

t test. This statistic tests the null hypothesis that two population distributions are

identical against the alternative hypothesis that the distributions are not identical.

Suppose we had two groups of burn patients (Group A and Group B) who

obtained the following scores on a scale measuring positive body image:

Group A: 14, 19, 11, 22, 17

Group B: 10, 16, 15, 18, 13

To perform the Mann-Whitney U test, we must arrange the scores in order and

rank them, while maintaining information about group affiliation:

Score: 10 11 13 14 15 16 17 18 19 22

Group: B A B A B B A B A A

Rank: 1 2 3 4 5 6 7 8 9 10

The ranks associated with each group are then separately summed to yield 

RA and RB:

RA � 2 � 4 � 7 � 9 � 10 � 32

RB � 1 � 3 � 5 � 6 � 8 � 23

The formula for computing the U-statistic for group A is as follows:

where nA � number of observations in Group A

nB � number of observations in Group B

RA � summed ranks for Group A

The formula for computing UB would be analogous, except that the n for group

B would be used in the numerator of the second term, and the R for group B would

be used in the third term of the formula. Using this equation, we would obtain the

following:

The U value that is used as the test statistic is the smaller of the two Us,

which in this case is UA � 8. The critical values for U (for a � .05) for a non-

directional test are presented in Table 5 of Appendix: Theoretical Sampling

Distribution Tables. To use the table, we look for the number at the intersection of

the appropriate row and column for nA and nB. In our present example, with nA �
5 and nB � 5, the critical value is 2. One must be very careful in using this table,

because it is different from other tables of critical values we have described thus

far: To be statistically significant, the observed U must be equal to or less than the

UB � 15 2 15 2 � c 15 2 16 2
2
d � 23 � 17

UA � 15 2 15 2 � c 15 2 16 2
2
d � 32 � 8

UA � nAnB � c nA 1nA � 1 2
2

d � RA
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Mann-Whitney U-Test
A Ranks

Burn Patient 
Group N

Mean 
Rank Sum of Ranks

Positive Body Image Group A 5 6.40 32.00

Group B 5 4.60 23.00

Total 10

Positive Body 
Image

Mann-Whitney U 8.000

Wilcoxon W 23.000

Z �.940

Asymp. Sig. (2-tailed) .347

Exact Sig. [2*(1-tailed
Sig.)]

.421a

B Test Statisticsb

a. Not corrected for ties
b. Grouping variable: Burn patient group

FIGURE 3 SPSS printout of a Mann-Whitney U test.

tabled value. Our obtained value of 8 is greater than the tabled value of 2, and so

we must retain the null hypothesis that the two distributions are identical.

TIP: When the n for either group is greater than 20, the value of U
approaches a normal distribution. A transformation (described in non-
parametric textbooks) can be applied to the obtained U statistic to yield 
a z statistic, which can then be compared to the critical values for the
normal distribution.

Figure 3 shows the SPSS printout for a Mann-Whitney U test using the same

data, which was run in the Analyze ➜ Nonparametric Tests ➜ Two Independent

Samples analysis. The printout shows in Panel A that the mean rank for Group A was

6.40, while that for Group B was 4.60, and the sum of ranks was 32.0 and 23.0 for

these groups, respectively. The value of the U statistic is 8.0. Wilcoxon W is the sum of

ranks for the group with the smallest n. In this case, since both ns were 5, the value of

W � 23.0, the sum of ranks for the group with the smallest U value. Using the binomi-

al distribution, the exact probability value for U � 8.0 is .421, which is nonsignificant.

The value for z was also computed (�.940) and the associated probability is shown

(.347). In this example, since the n for both groups was under 20, the exact probability

rather than the probability based on the normal distribution should be used. In either

case, however, group differences were not statistically significant.
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Example of a Mann-Whitney U test:

Yip and colleagues (2007) tested the effectiveness of an arthritis self-management

program on pain and functional ability outcomes, using a two-group experimental

design. Because their outcome measures had significant departures from normality,

they used nonparametric statistics. For example, change scores in pain ratings and

fatigue were compared for the two groups using the Mann-Whitney U test.

Differences were significant for both pain ratings (p � .0001) and fatigue (p � .008).

Kruskal-Wallis Test

The Kruskal-Wallis test is the nonparametric counterpart of a one-way ANOVA. It

is used to analyze the relationship between an ordinal dependent variable and a cat-

egorical independent variable that has three or more levels (i.e., when there are

three or more groups). The Kruskal-Wallis procedure tests the null hypothesis that

the population distributions for the three (or more) groups are identical against the

alternative that there are differences in the distributions. This test should be used

only if there are five or more cases per group.

Suppose that we measured the life satisfaction of patients in three nursing

homes, using a six-item scale and obtained the following scores:

Home A:    6, 12, 18, 14, 17

Home B: 15, 19, 16, 20, 10

Home C: 30, 27, 24, 25, 22

Comparing the three groups involves ranking the scores for the sample as a

whole, and then summing the ranks separately for each group:

Score: 6 10 12 14 15 16 17 18 19 20 22 24 25 27 30

Group: A B A A B B A A B B C C C C C

Rank: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RA � 1 � 3 � 4 � 7 � 8 � 23

RB � 2 � 5 � 6 � 9 � 10 � 32

RC � 11 � 12 � 13 � 14 � 15 � 65

Kruskal and Wallis proposed the following formula for the test statistic, the

H statistic:

where N � total sample size

R2 � summed ranks for a group, squared

n � number of observations in a group

Σ � the sum of the R2/n ratios for all groups

For the data in our example of life satisfaction in three groups of nursing home

patients, the value of H using this formula is 9.78 (computation not shown). The H
statistic has a sampling distribution that approximates a chi-square distribution with

k � 1 degrees of freedom, where k is the number of groups. For a � .05 with 2 de-

grees of freedom, the critical value of H from the chi-square table in Table 4 of

H � c 12

N 1N � 1 2 d c©
R2

n
d � 3 1N � 1 2
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Kruskal-Wallis Test
A Ranks

Nursing 
Home N

Mean 
Rank

Life Satisfaction 
Score

Home A 5 4.60
Home B 5 6.40
Home C 5 13.00
Total 15

Life Satisfaction
Score

Chi-Square 9.780
df 2
Asymp. Sig. .008

B Test Statisticsa,b

a. Kruskal-Wallis Test
b. Grouping variable: Nursing home

FIGURE 4 SPSS printout of a Kruskal-Wallis test.

3 According to a computer analysis of these data, the actual significance levels were .42 (Home A vs.

Home B); .009 (Home A vs. Home C); and .009 (Home B vs. Home C).

Appendix: Theoretical Sampling Distribution Tables is 5.99. Since the calculated

value of H (9.78) is greater than this critical value, we reject the null hypothesis that

the distribution of life satisfaction scores in the three nursing homes is identical.

Figure 4 presents the SPSS output for a Kruskal-Wallis test using these same

data. (We used the procedure for “K Independent Samples” within the

Nonparametric Tests set of SPSS Analysis commands.) The printout shows that the

mean ranks for the scores in the three nursing homes were 4.6, 6.4, and 13.0, respec-

tively. The value of the test statistic (shown as “Chi Square”) is 9.78, the same value

we obtained manually. The actual significance level is .008, indicating a statistically

significant difference in the ranks.

As with ANOVA, a significant result does not mean that all groups are signifi-

cantly different from one another. Post hoc tests are needed to assess the nature of

the relationship between nursing homes and life satisfaction. Various procedures

have been proposed but the one that is most often recommended is the Dunn proce-
dure. This procedure involves using the Mann-Whitney U test to compare the ranks

for all possible pairs of groups. To avoid a higher-than-desired risk of a Type I error,

a correction factor (often called a Bonferroni correction) is used. The correction in-

volves adjusting the significance criterion: The desired alpha is divided by the num-

ber of pairs being compared. In the present example, to test for differences between

the three pairs at the .05 level, the alpha would be .05 	 3, or .017. This means that

for a difference between pairs to be significant at a� .05, the computed value for the

U statistic would be compared to the critical value for a � .017. If we applied the

Dunn procedure to our current example, we would find that Home C was significantly

different from the other two nursing homes, but that Home A and Home B were

not statistically different from each other.3
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TIP: The Bonferroni correction is sometimes applied when researchers are
testing hypotheses with multiple dependent variables. For example, if a
dependent groups t test were used to compare means before and after an
intervention for three separate outcomes, a researcher might use .017 as
the significance criterion to guard against the risk of a Type I error when
multiple tests are performed. Some have argued, however, that the
Bonferroni correction in such situations is overly conservative and
increases the risk of a Type II error.

Example of a Kruskal-Wallis test:

Im, Chee, Guevara, Lim, and Shin (2008) studied ethnic differences in cancer

patients’ needs for help, and used the Kruskal-Wallis test to compare responses

about needs for Asian, African-American, White, and Hispanic patients. They found

significant ethnic differences, for example, with regard to psychological needs

(p < . 01). Post hoc comparisons using the Mann-Whitney U test with an adjusted

alpha using Bonferroni corrections were performed, with alpha adjusted to .0083.

McNemar Test

The McNemar test is used to test differences in proportions for dependent groups in

a 2 � 2 within-subjects design. For example, if 50 women were asked before and

after a special health-promotion intervention whether or not they practiced breast

self-examination (BSE), the McNemar test could be used to test changes in the rates

of BSE. The null hypothesis is that there are no pretreatment to posttreatment

changes in BSE, and the alternative hypothesis is that there are changes. Suppose

that 30% of the women (n � 15) practiced BSE before the intervention, while 40%

(n � 20) did so after the intervention. What is the likelihood that the 10 percentage

point increase reflects a true difference in BSE practice?

The data for our example must be arranged in a table that distributes the

women based on whether they did or did not practice BSE at the two time points, as

in Table 5. This table shows that 15 women practiced BSE both before and after the

intervention (cell A), 30 women did not practice BSE at either point (cell D), and 5

women who originally did not practice BSE did so after the intervention (cell C). No

woman who originally practiced BSE ceased to do so after the intervention (cell B).

It is possible to determine exact probabilities in this situation through the use

of the binomial distribution. Unless the sample size is very small, however, it is more

convenient to use the chi-square distribution. The following formula can be applied:

where C � number in cell C (changed from no to yes)

B � number in cell B (changed from yes to no)

⏐⏐ � the absolute value of the difference

If we applied this formula to the data at hand, we would find that x2 � 3.20

(computation not shown). For the McNemar test, there is always 1 degree of freedom.

If we set a � .05, we find in the chi-square table (Table 4 of Appendix: Theoretical

Sampling Distribution Tables) that the critical value of chi-square is 3.84. Thus, we

must retain the null hypothesis. The change in the percentage of women who

x2 �
1 0C � B 0 � 1 2 2

C � B
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TABLE 5 Distribution of Data on BSE Practice for McNemar Test Example

BSE After Intervention?

Yes No

BSE Before
Intervention?

Yes Cell A: 15 women Cell B: 0 women
No Cell C: 5 women Cell D: 30 women

TABLE 6 Wilcoxon Signed-Ranks Test Example: 
Wives’ Versus Husbands’ Anxiety

(1)
Wife

(2)
Husband

(3)
Difference

(4)
–Difference–

(5)
Rank

(6)
R�

(7)
R�

17 16 1 1 1 1
19 14 5 5 5 5
16 20 �4 4 4 4
18 12 6 6 6 6
22 24 �2 2 2 2

18 21 �3 3 3 3

15 24 �9 9 9 9
22 11 11 11 10 10
14 21 �7 7 7 7
23 15 8 8 8 8

R� � 30 R� � 25

practiced BSE was not statistically significant at the .05 level. (When the McNemar

analysis was performed in SPSS, we found that the exact probability was .063.)

Wilcoxon Signed-Ranks Test

The Wilcoxon signed-ranks test is the nonparametric counterpart of the paired

(dependent groups) t test when outcomes are measured on an ordinal scale. It is used

to test group differences in ordinal-level measures when there are two paired groups

or a within-subjects design. The Wilcoxon signed-ranks procedure tests the null

hypothesis that the population distributions for the two sets of observations are

identical, against the alternative hypothesis that they are not identical.

Suppose we had 10 married couples whose child has undergone surgery.

Both the husband and wife have completed a scale designed to measure parental

anxiety, resulting in the scores shown in the first two columns of Table 6. We are

testing the null hypothesis that husbands and wives have comparable anxiety. To

perform the signed-ranks test, the score from one set must be subtracted from the

corresponding scores in the other set, as shown in column 3. Next, the absolute

values of the differences (column 4) are ranked, with the rank of 1 assigned for

the smallest difference (column 5). Then, the ranks for the positive differences are

separately summed, as are the ranks for the negative differences, as shown in the

last two columns of Table 6. The table indicates that the positive ranks (which are

associated with higher anxiety scores among the wives) totaled 30, while the

negative ranks (associated with higher scores for the husbands) totaled 25.

If the null hypothesis that the husbands’ and wives’ anxiety scores are similar-

ly distributed were true, the sum of the ranks for negative differences should be the
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same as the sum of ranks for positive differences. In our example, the expected value

of the ranks for both groups (RE) is 27.5 ((R� � R�) 	 2) if the null hypothesis were

true. Tables for the Wilcoxon signed-ranks test statistic, called the T statistic,

are available in nonparametric textbooks and are precise when the number of pairs is

50 or fewer. When the number of pairs is 10 or greater, however, the sampling distri-

bution of T approximates a normal distribution, and the following formula4 can be

used to compute a z statistic:

Using the data from Table 6 in this formula, we would compute z to be �.255

(computations not shown). According to Table 1 of Appendix: Theoretical Sampling

Distribution Tables for the normal distribution, the critical value for rejecting the null

hypothesis with a � .05 is about 1.96. Thus, the null hypothesis is accepted. The

data do not justify an inference that husbands and wives in the population differ in

their anxiety in relation to their child’s surgery.

Figure 5 shows the SPSS printout for the Wilcoxon signed-ranks test exam-

ple, which we created using the Analyze ➜ Nonparametric Tests ➜ Two Related

Samples routine. Panel A shows ranking information, and confirms that the sum of

z �
R� � RE

B
12n � 1 2RE

6

4 It does not matter whether R� or R� is used in the numerator of the formula, since both are equal dis-

tances from RE. The only effect of the substitution would be to change the sign of z.

Wilcoxon Signed-Ranks Test
A Ranks

N
Mean 
Rank

Sum of
Ranks

Husband’s Anxiety Score- Negative ranks 5a 6.00 30.00

Wife’s Anxiety Score Positive ranks 5b 5.00 25.00

Ties 0c

Total 10

B Test Statisticsb

a. Husband’s anxiety score < Wife’s anxiety score

b. Husband’s anxiety score > Wife’s anxiety score

c. Husband’s anxiety score = Wife’s anxiety score

Husband’s Anxiety 
Score – Wife’s Anxiety

Score

Z

Asymp. Sig. (2-tailed)

�.255a

.799

a. Based on positive ranks

b. Wilcoxon Signed-Ranks Test

FIGURE 5 SPSS printout of a Wilcoxon Signed-Ranks test.

Chi-Square and Nonparametric Tests

192



TABLE 7 Cochran’s Q Test Example: 
Bowel Movements Following Fiber-Rich Diet

Patient Day 1 Day 2 Day 3 Row Sum Row Sum2

1 1 0 1 2 4
2 0 1 1 2 4
3 0 1 0 1 1
4 0 1 1 2 4
5 1 1 1 3 9
6 0 0 1 1 1
7 0 1 0 1 1
8 1 0 1 2 4
9 0 1 1 2 4

10 0 1 1 2 4

SC1
� 3 SC2

� 7 SC3
� 8 SR � 18 SR

2 � 36

Mean (MR) � 18/3 � 6

Codes: 0 � no bowel movement

1 � bowel movement

the negative ranks was 30.0 and the sum of the positive ranks was 25.0, consistent

with Table 6. The actual probability for a z of �.255, shown in Panel B, is .799.

Example of a Wilcoxon signed-ranks test:

Liu (2008) compared patients’ satisfaction with their appearance before and after tumor

excision among patients with head and neck tumors. Using the Wilcoxon signed-ranks

test, Liu found a significant decline in patients’ satisfaction (z � �6.39, p < .001).

Cochran’s Q Test

The Cochran Q test can be used to test for population differences in proportions

when the dependent variable is dichotomous and when there are three or more re-

peated observations or correlated groups. For example, suppose a sample of 10 el-

derly patients with constipation problems was put on a special fiber-rich diet, and

bowel movements were recorded for three consecutive days, beginning with the day

the treatment was initiated. Table 7 presents some hypothetical data for this exam-

ple, with no bowel movement coded 0 and a bowel movement coded 1. According

to this table, three patients had bowel movements on Day 1, while 7 and 8 patients

had bowel movements on Days 2 and 3, respectively. The research question is

whether the differences reflect true population changes or are the result of sampling

fluctuation.

To compute the Q statistic, the number of cases coded 1 must be summed

across both columns (SC) and rows (SR), as shown in Table 7. Then, each summed

row value must be squared, and these squared values must be summed (SR
2). The Q

statistic can then be computed using the following formula:

Q �
k 1k � 1 2 � © 1SC � MR 2 2

k 1SR 2 � SR
2
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where k � number of groups/times of observation

SC � sum for each column (i.e., for each k)

SR � sum of all summed rows

MR � mean of the summed rows (SR 	 k)

Σ � sum of the (SC � MR)2 values for the k columns

Although the formula looks complex, it boils down to the insertion of various

sums and squares, most of which we have already calculated and are shown in

Table 7. In our example, we find that Q � 4.67 (computation not shown). When the

number of observations per group is 10 or greater, Q is distributed approximately as

chi-square with k � 1 degrees of freedom. In our example, with df � 2 and a � .05,

the critical value of Q from the chi-square distribution (Table 4 of Appendix:

Theoretical Sampling Distribution Tables) is 5.99. Our obtained value of Q is less

than the tabled value, so we accept the null hypothesis. The differences in the propor-

tions for the three days of observation are not statistically significant (the actual p for

these data, using SPSS, is .097).

Friedman Test

Like Cochran’s Q test, the Friedman test is used when there are three or more cor-

related groups, or three or more sets of observations for the same subjects, but the

Friedman test is used when the dependent variable is measured on an ordinal scale.

The Friedman test is the nonparametric analog of the one-way repeated measures

ANOVA.

Suppose that nine nurses were asked to read case reports of three patients with

Do-Not-Resuscitate orders—an AIDS patient, a cancer patient, and a patient with

Alzheimer’s disease. The case reports are presented to the nurses in a random order.

For each patient, nurses are questioned about the care that they think should be pro-

vided, and the responses are used to create an index of aggressiveness of nursing

care. Fictitious data for this hypothetical study are presented in Table 8. The null

hypothesis is that scores on aggressiveness of nursing care are unrelated to the

patient’s type of illness.

The Friedman test involves ranking the scores for each participant across the

different conditions. For example, the first nurse had a score of 15 for the Alzheimer

TABLE 8 Friedman’s Test Example:
Aggressiveness of Nursing Care for 
DNR Patients with Different Illnesses

Score (Rank)

Nurse AIDS Cancer Alzheimer

1 17 (2) 18 (3) 15 (1)
2 15 (2) 20 (3) 11 (1)
3 14 (3) 12 (1) 13 (2)
4 11 (1) 19 (3) 18 (2)
5 18 (2) 20 (3) 17 (1)
6 16 (3) 14 (1) 15 (2)
7 12 (1) 14 (3) 13 (2)
8 9 (1) 13 (3) 12 (2)
9 16 (2) 17 (3) 15 (1)

R1 � 17 R2 � 23 R3 � 14
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patient description, which is assigned the rank of 1 because it is the lowest score for

that nurse. The ranks of 2 and 3 are assigned to the AIDS and Cancer patient condi-

tions, respectively, for the first nurse. The ranks for each condition are then summed.

For example, the sum of the ranks for the AIDS patient description is 17. If the null hy-

pothesis were true, we would expect the sum of the ranks for each condition to be about

equal; any differences in the rankings across nurses would simply reflect sampling

error. The formula for the Friedman test, which follows a chi-square distribution, is as

follows:

where k � number of conditions or groups

R2 � sum of the ranks for each k condition/group, squared

Σ � sum of the squared sum of ranks (R2) for the k conditions

N � number of participants

If we applied this formula to the data in Table 8, we would find that x2 � 4.67

(computations not shown). With an alpha level of .05 and k � 1 � 2 degrees of free-

dom, the critical value from the chi-square table (Table 4 of Appendix: Theoretical

Sampling Distribution Tables) is 5.99. The computed value does not exceed the tabled

value of chi-square, and so the null hypothesis is retained. The nurses’ scores for

aggressiveness of care are not significantly different for the three patient descriptions.

Figure 6 shows the SPSS printout for the Friedman test, created through

Analyze ➜ Nonparametric Tests ➜ K Related Samples. Panel A shows the mean

ranks for each patient type—i.e., the total ranks shown at the bottom of Table 8,

divided by 9 (N). Panel B shows that the value of the test statistic is 4.667, and that

the probability associated with it is .097.

If we had rejected the null hypothesis in this example, it would have been nec-

essary to conduct additional analyses to determine which comparisons were driving

the overall results. The Dunn procedure with Bonferroni correction, described earli-

er, could be used to isolate the pairs of conditions that were significantly different

from one another.

x2 � c 12 1©R2 2
Nk 1k � 1 2 d � 3N 1k � 1 2

Friedman Test
A Ranks

N 9.000

Chi-Square 4.667

df 2.000

Asymp. Sig. .097

Mean Rank

Patients with AIDS 1.89

Patients with Cancer 2.56

Patients with Alzheimer’s 1.56

B Test Statisticsa

a. Friedman Test

FIGURE 6 SPSS printout of a Friedman Test.
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Example of a Friedman test:

Rungreangkulkij and Wongtakee (2008) evaluated the psychological impact of

Buddhist counseling for Thai patients suffering from anxiety. They measured anx-

iety before the intervention, after it, and then 2 months later using the Friedman

test. Anxiety declined over the course of the study, and differences were signifi-

cant (x2 � 42.0, p < .001).

TIP: Each of the nonparametric tests we have described tests the existence
of a relationship between an independent and dependent variable. It is
beyond the scope of this text to describe indexes for measuring the
strength of the relationship for situations in which these nonparametric
tests would be used, but such indexes do exist. For further information,
you can consult Jaccard and Becker (2001).

RESEARCH APPLICATIONS OF NONPARAMETRIC TESTS

Except for the chi-square test for independence, nonparametric tests are infrequently

used in nursing research. In large part, this is because parametric tests are more pow-

erful than their nonparametric counterparts and are fairly robust to violations of

many underlying assumptions. Yet, nonparametric tests are often appropriate, espe-

cially if there is evidence that the assumptions for parametric tests cannot possibly

be met (e.g., a markedly skewed distribution of the dependent variable). This section

examines some of the major applications of nonparametric tests and discusses meth-

ods of effectively displaying results from these tests in a research report.

The Uses of Nonparametric Tests

The nonparametric tests we have discussed in this chapter are, for the most part, used

in much the same applications as those for t tests and ANOVA, except for differences

in how the outcome variables were measured. Thus, we provide only a few illustra-

tions.

1. Answering research questions As with most inferential statistics, the pri-

mary use of nonparametric tests is substantive—that is, they are used mainly to

test hypotheses and to answer research questions. Throughout this chapter we

have illustrated the wide array of research questions that have relied on the use

of nonparametric tests, using actual examples from the nursing literature.

2. Testing biases Nonparametric tests are also used to examine the nature and

extent of any biases that need to be considered in interpreting substantive

results. For example, Nyamathi and colleagues (2008) studied the effective-

ness of a nurse case-managed intervention for latent tuberculosis among the

homeless. First, however, they compared the background characteristics of

those in the intervention and control groups to assess selection bias. They used

chi-square tests to assess the equivalence of the two groups with respect to

such characteristics as ethnicity, marital status, and sex.

3. Variable selection for multivariate analyses As you know, researchers

sometimes undertake complex multivariate analyses to assess the contribution

of multiple independent variables, taken simultaneously, in predicting an

outcome. They often begin by looking at each potential predictor in relation

to the outcome of interest in a bivariate fashion, to see if some should be

eliminated from further consideration. When outcomes of interest are
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dichotomous (e.g., had a fall versus did not have a fall), chi-squared tests or

bivariate odds ratios are likely to be used in these preliminary analyses. For

example, Certain, Mueller, Jagodzinski, and Fleming (2008) developed a

model to identify predictors of domestic abuse in postpartum women. Each

possible independent variable or predictor, such as marital status, employment

status, and alcohol use, was tested for its relationship to abuse status using chi-

square tests. Variables that had a p < .10 were placed in the final model.

Presentation of Nonparametric Tests in Research Reports

Like other statistical tests, nonparametric tests usually are summarized in the text of

a report when there are only one or two tests, but are presented in a table if there are

more. The standard convention is to provide information about the name of the test,

the value of the test statistic, degrees of freedom, sample size, and significance

level. Here is a fictitious example: “A chi-square test indicated that diabetic patients

who had regular inspection of their feet by a nurse or other healthcare professional

were significantly more likely than those who did not to regularly inspect their own

feet for foot complications and ulcers (x2 [1, N � 653] � 45.3, p < .001).”

For tests with a nominal-level dependent variable, such as the chi-square test

of independence, multiple tests can be reported in a table in much the same fashion

as a table for t tests, except that the descriptive information is group percentages

rather than group means. Table 9 presents an example of such a table that elaborates

on our earlier example of heparin lock placement time groups. For four separate com-

plication outcomes, the table shows the percent in each group with the complication,

the value of the chi-square statistic, and the p-value. The table illustrates how

Fisher’s exact test was reported for an outcome for which the expected frequency for

some cells was less than five.

When a table is used to summarize multiple tests, the text highlights key

results. Here is an example of how the text corresponding to Table 9 might read:

The table shows that the rates of various complications in the two he-

parin lock placement time groups were comparable for every type of

complication considered. Overall, 18.0% of the 72-hour group, com-

pared to 22.0% of the 96-hour group, had a complication, a difference

that was not statistically significant. Although none of the differences

was significant, there was a modestly higher rate of complications in the

96-hour group for every complication. A post hoc power analysis re-

vealed that the power of the statistical tests was quite low, and therefore

replication with a larger sample of participants seems warranted.

TABLE 9 Example of a Table for Chi-Square Test Results

Complication Heparin Lock Placement Time Group

72 Hours 
(n � 50)

96 Hours 
(n � 50) x2 p

Phlebitis 12.0% 16.0% .38 .54
Blocking/Leaking 8.0% 12.0% .44 .51
Purulence/Septicemia 0.0% 2.0% a 1.00
Any complication 18.0% 22.0% .25 .62

aFisher’s exact test, expected frequency 
 5 in two cells

Percentage of Patients with Various Complications, by Length of Time
Heparin Lock was in Place
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When a chi-square test is applied to contingency tables of fairly large

dimensionality—for example, for a 3 � 4 design—it may be more informative to

present the full crosstabulation, particularly if there is a complex pattern of results

for individual cells. When a full contingency table is presented, the results of the

statistical tests can be placed in a footnote.

When information about odds ratios or relative risk is communicated in a

report, they are almost always shown with their 95% CIs. As we see in the next

section, odds ratios and chi-square tests can sometimes be effectively presented in a

single table.

TIP: We urge you to report ORs or RRs when it is appropriate to do so,
to facilitate the work of future meta-analysts. If page constraints or other
considerations make it difficult to do so, be sure to include sufficient
information about absolute risks (the appropriate percentages) so that
an OR or RR can be computed with your data by others.

When dependent variables are measured on an ordinal scale—for example,

when Mann-Whitney U tests or Kruskal-Wallis tests have been performed—a com-

mon strategy for table presentation is to present the medians for the different groups

being compared for each dependent variable, followed by information on the statis-

tical test results.

Research Example

In this section we briefly summarize a study that used

multiple chi-square tests of independence.

Study: “Health outcomes associated with potentially in-

appropriate medication use in older adults” (Fick, Mion,

Beers, & Waller, 2008)

Study Purpose: The purpose of this study was to exam-

ine the prevalence of potentially inappropriate medica-

tion use (PIMs) among older community-dwelling

adults, and to explore the relationships between PIMs

and healthcare outcomes.

Methods: Data were obtained from an administrative

database for adults in a managed care organization. The

database contained medication information for nearly

17,000 individuals aged 65 and older. The researchers

used a list referred to as Beers criteria for identifying

high-risk PIMs—drugs that should be avoided in the el-

derly either because they are ineffective or they pose high

risks for the elderly. Any person using at least one such

drug was classified as being in the PIMs group, while

those not using any PIM were in a comparison group. The

analysis involved comparing these two groups with

respect to the proportion experiencing a drug-related

problem (DRP) within 30 days of a prescription.

Analysis: Chi-square tests and t tests were used to assess

the demographic comparability of the PIMs and Com-

parison group. Chi-square and Fisher’s exact tests were

used to compare the two groups with regard to preva-

lence of various drug-related problems. Odds ratios were

computed to assess the relative risk of the use of a PIM

in relation to adverse outcomes.

Results: The two groups differed significantly on several

background characteristics. For example, significantly

more of the elders in the PIMs group (71.0%) than in the

comparison group (54.4%) were female (x2 � 476.1,

p < .001). In terms of DRPs, Table 10 highlights some of

the results. With only a few exceptions (not shown in

this table), elders in the PIMs group were significantly

more likely to experience DRPs than those in the
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TABLE 10 Differences in Prevalence of Selected Drug-Related Problems Among Elders 
with and without Potentially Inappropriate Medications (PIMs)

Drug-Related 
Problem

PIMs Group 
(n � 6,875)

Comparisons 
(n � 10,002) x2 Odds Ratios

n % n % OR 95% CI

Syncope 246 3.58 122 1.22 106.3* 3.01 2.41–3.74
Malaise and fatigue 237 3.45 106 1.06 116.6* 3.33 2.65–4.20
Dehydration 126 1.83 44 0.44 79.3* 4.23 2.99–5.96
Sleep disturbances 102 1.48 42 0.42 54.5* 3.57 2.49–5.12
Urinary incontinence 61 0.89 24 0.24 34.1* 3.72 2.32–5.97
Alteration of consciousness 35 0.51 14 0.14 19.2* 3.65 1.96–6.79

*All chi-square tests were significant at p < .001

Abridged and adapted from Table 3 of Fick et al., 2008

comparison group. By looking at the percentages (the

absolute risks), we see that the prevalence of most prob-

lems was relatively small. In most cases, fewer than 2%

of those in either group experienced any particular prob-

lem. The chi-square information communicates that, al-

though rates were relatively low in both groups, many

group differences had a high probability of being real

(i.e., not the result of chance fluctuations). The inclusion

of OR information adds an important perspective. In

most cases, the risk of a DRP was three or more times as

high in the PIMs group as in the comparison group.

Finally, the 95% CIs communicate information about the

accuracy of the risk information.

Summary Points

• Nonparametric tests are most often used when the

measurement scale of the variables is nominal or

ordinal, or when assumptions for parametric tests

are presumed to be severely violated, especially

when samples are small.

• The chi-square test of independence (Pearson’s
chi-square) is a test for making inferences about

population differences in proportions between two

or more independent groups. It is used when both

the independent and dependent variable are mea-

sured on the nominal scale (or an ordinal scale

with few levels).

• The chi-square statistic (�2) is computed by con-

trasting expected frequencies (frequencies expect-

ed if the null hypothesis of no relationship between

variables were true) and observed frequencies for

each cell in a contingency table.

• In a 2 � 2 table in which the expected frequency is

less than 10, it is sometimes recommended that

Yates’ correction for continuity be applied.

When the expected frequency in a cell is less than

5, an alternative test known as Fisher’s exact test
is often used.

• The index used to measure the strength of the re-

lationship is the phi coefficient for a 2 � 2 table

and Cramér’s V for a larger table. Cramér’s V
can be used as the effect size index in a power

analysis in the context of a chi-square situation.

• Although Cramér’s V is sometimes used as an

overall effect size index, the odds ratio and rela-

tive risk index are often used, especially for

meta-analysis. Power analysis in a chi-square type

situation requires estimates of either Cramér’s

V or, in a 2 � 2 design, the two population

proportions.

• Numerous nonparametric tests exist, and key issues

is selecting such a test is whether the design is

between-subjects (independent groups) or within-

subjects (dependent groups or repeated measures),

and what the measurement scale of the dependent

variable is. Many nonparametric tests are rank
tests that involve assigning ranks to scores.
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• For between-subjects designs with an ordinal-level

dependent variable, the Mann-Whitney U test can

be used to test differences in ranks between two

groups, and the Kruskal-Wallis test can be used to

compare ranks when there are three or more

groups. These tests are the nonparametric counter-

parts of the t test and ANOVA, respectively.

• For dependent groups and a dichotomous depen-

dent variable, the McNemar test can be used for

two sets of observations, and Cochran’s Q test is

appropriate for three or more observations.

• For two dependent groups with ordinal data, the

Wilcoxon signed-ranks test may be used, and

when there are more than two groups or observa-

tions, the Friedman test is appropriate. These tests

are the nonparametric analogs of the paired 

t test and repeated measures ANOVA, respectively.

• When either the Kruskal-Wallis or Friedman test

is statistically significant, the Dunn procedure
(ideally with a Bonferroni correction to reduce

the risk of a Type I error) can be used to determine

the nature of the relationship between the inde-

pendent and dependent variables (i.e., to isolate

the pairs of groups or observations responsible for

a significant overall test).

number of participants needed in a full-scale study to

achieve a power of .80 with a� .05. For each of the hypo-

thetical pilot results presented below, how many study par-

ticipants in each group would be needed in the larger

study? (Note that in using Table 3, it makes no difference

which of two groups is considered Group 1 or Group 2.)

(a) Experimental group: 45%, Control group: 65%

(b) Experimental group: 15%, Control group: 5%

(c) Experimental group: 20%, Control group: 35%

(d) Experimental group: 60%, Control group: 75%

A6. Match each of the nonparametric tests in Column A with

its parametric counterpart in Column B:Flu Shot Status Group A Group B Group C Total

Had a flu shot 20 45 25 90

Did not have 
a flu shot

80 55 75 210

Total 100 100 100 300

Is the value of chi-square statistically significant at the .05

level? Based on the (O � E)2/E components contributing

to chi-square, comment on the nature of the relationship

between groups and flu shot status.

A2. This question was intentionally removed from this edition.

A3. Using the statistical information from the first two exer-

cises, write a paragraph summarizing the results of the

analyses.

A4. Given each of the following situations, determine whether

the calculated values of chi-square are statistically signifi-

cant:

(a) x2 � 3.72, df � 1, a � .05

(b) x2 � 9.59, df � 4, a � .05

(c) x2 � 10.67, df � 3, a � .01

(d) x2 � 9.88, df � 2, a � .01

A5. Assume that a researcher has conducted a pilot interven-

tion study and wants to use the pilot results to estimate the

A. Nonparametric Test B. Parametric Test

1. Mann-Whitney U Test

2. Friedman Test

3. Kruskal-Wallis Test

4. Wilcoxon Signed-Ranks 

Test

a. Paired t test

b. One-way ANOVA

c. Independent groups t test

d. Repeated measures

ANOVA

A7. Using the information provided, indicate which test you

think should be used for each of the following situations:

(a) Independent variable: normal birthweight versus low

birthweight infants; dependent variable: 1-minute

Apgar scores (0 to 10 scale); sample size: eight infants

per group

(b) Independent variable: time of measurement (before,

during, and after surgery); dependent variable: heart

rate; sample size: 80

(c) Independent variable: time of measurement (before,

during, and after intervention); dependent variable:

did versus did not exercise daily; sample size: 30

(d) Independent variable: infertility treatment A versus

infertility treatment B versus control condition; de-

pendent variable: did versus did not become pregnant;

sample size: 180

†

†

†

†

†

†

The following exercises cover concepts presented in this chap-

ter. Answers to Part A exercises that are indicated with a dag-

ger (†) are provided here. Exercises in Part B involve comput-

er analyses and answers and comments are offered on the Web

site.

PART A EXERCISES

A1. Calculate the chi-square statistic and degrees of freedom

for the following set of data for 300 elders exposed to dif-

ferent interventions to encourage flu shots:

Exercises
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(e) Independent variable: Drug A versus Drug B versus

placebo; dependent variable: pain measured on a 0 to

10 scale; sample size: nine per group

(f) Independent variable: role (elderly parent versus adult

child); dependent variable: preference for nursing

home placement versus home care for parent

PART B EXERCISES

B1. For Exercises B1 to B5, you will be using the SPSS dataset

Polit2SetB. Begin by running a crosstabs (Analyze ➜
Descriptive Statistics ➜ Crosstabs) for the variables

bmicat and hlthlimit. The first is a variable that uses the

women’s body mass index (BMI), computed from their

height and weight, to form four groups: those classified in

the normal BMI range (values under 25.0), overweight

(values from 25.0 to 29.99), obese (values from 30.0 to

40.0), and morbidly obese (values over 40.0). The second

variable is dichotomous responses to whether or not the

woman had a health condition that limited her ability to

work (yes is coded 1, no is coded 0). In the first dialog box

for the Crosstabs, enter hlthlimit as the row variable and

bmicat as the column variable. Click the pushbutton for

Cells, and select Observed, Expected, and Row and

Column percentages. Click on Continue, then open the dia-

log box for Statistics. Select Chi-square and also Phi and

Cramér’s V. Then click Continue and OK to initiate the

analysis. Answer the following questions about the output:

(a) How many normal-weight women were expected to

have a health limitation, if BMI and health limitations were

unrelated? How many actually did have a limitation? What

are the two values for women who were morbidly obese?

(b) What percent of all women had a health condition that

limited their ability to work? (c) What is the null hypothesis

being tested in this analysis? (d) What is the value of the

chi-square statistic? (e) How many degrees of freedom are

there? (f) Are the results statistically significant for a �
.05? At what level? (g) Comment on the nature of the rela-

tionship. (h) What is the value of Cramér’s V? (i) Based on

this effect size value, approximately how much power was

there to correctly reject the null hypothesis in this analysis?

(You will need to consult Table 4 of Appendix: Tables for

Power Analyses.)

B2. Within SPSS, it is possible to introduce a third categorical

variable into a Crosstabs analysis, to see if the relationship

between two variables is consistent for different levels of a

third variable. In this exercise, run the same analysis that

you ran in Exercise B1, except this time enter the variable

poverty as the “Layer” variable in the third slot of the open-

ing dialog box. This will run the crosstab and chi-square

analysis between bmicat and hlthlimt separately for women

who were below poverty and those who were not. Then an-

swer the following questions: (a) Among normal-weight

women who were below poverty, what is the expected
frequency of having a health limitation? How many actually

did have a limitation? What are the two values for

normal-weight women who were above poverty? (b) What

percent of women below poverty and above poverty had a

health condition that limited their ability to work? (c) What

were the values of the chi-square statistic in the below

poverty and above poverty subgroups? (d) Were both statis-

tics statistically significant for a � .05? At what level?

(e) What were the values of Cramér’s V for the below

poverty and above poverty groups? (f) Comment on these

values of V in relation to power in these analyses.

B3. In this exercise, we will be testing the null hypothesis

that smoking status (smoker) is unrelated to having a

health limitation. Because we want “cell a” to be the cell

with the risk factor and the unfavorable outcome, we will

recode smoker (which is coded 1 for smokers and 0 for

nonsmokers) so that smokers are coded 2. Similarly, we

recode hlthlimt so that those without a limitation are

coded 2 rather than 0. Click Transform ➜ Recode ➜
Into Different Variables. Select smoker and move it into

the Numeric Variables slot. Then type in a new variable

name (newsmoke) in the slot for Output Variable, and

click Change. Do the same process for hlthlimit, creating

a new variable newlimit. Now click on the pushbutton for

Old and New Values. In the next dialog box, in the Old

Value field, enter 1, and also enter 1 for New Value (we

are keeping code 1 the same), and then click Add. Next,

enter 0 for Old Value and 2 for New Value, and click

Add, Continue, and OK. The two new variables are at the

end of the data file, and you can label them by clicking

the Variable View tab at the bottom of the data editor.

Now, run Analyze ➜ Descriptive Statistics ➜ Crosstabs,

placing newsmoke in the slot for Rows and newlimit in

the slot for Columns. For Cell options, click Observed,

Expected, and Row Percentages. For options in the

Statistics dialog box, click Chi-square and Risk. Then

click Continue and OK and answer the following ques-

tions: (a) What was the absolute risk of having a health

limitation among smokers? And among nonsmokers?

(b) What is the value of the chi-square statistic in this

analysis? (c) Is this statistically significant for a � .05?

What is the probability level, and what does this mean?

(d) What is the odds ratio for this analysis? What does

this mean? (e) What is the 95% CI around the odds ratio?

(f) What is the relative risk of having a health limitation

for smokers, relative to nonsmokers?

B4. For this exercise, you will be running a Mann-Whitney 

U test, comparing smokers and nonsmokers on an ordinal-

level variable, drunk. This variable measures how fre-

quently in the prior month the woman had consumed

enough alcohol to get drunk (drunk), from never (code 1)

to 10� times (code 5). Begin by running a simple

Crosstabs (following steps described previously) so that

you can examine the distribution of values for drunk for

smokers and nonsmokers. Instruct the computer to show

observed frequencies and column percentages. Then run

the Mann-Whitney U test via Analyze ➜ Nonparametric ➜
Two Independent Samples Test. Move drunk into the slot

†

†

†

†
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Answers to Exercises

A1. χ2 � 16.66, df � 2. The tabled value of χ2 at a � .05 is 5.99, so the results are statistically significant. Group B’s rate of ob-

taining a flu shot is substantially higher than expected: The value of (O � E)2/E for that cell was 7.50.

A2. Cramér’s V � .24. If the value of V were .20, power would be between .85 and .90 (i.e., for a sample size between 273 and

316). Since V is larger than .20, power in this case exceeds .90.

A4. a. no; b. yes; c. no; d. yes

A5. a. 106; b. 159; c. 151; d. 165

A6. 1. c; 2. d; 3. b; 4. a

A7. a. Mann-Whitney U test;

b. Repeated measures ANOVA;

c. Cochran’s Q;

d. Chi-square test for independence;

e. Kruskal-Wallis test;

f. McNemar’s test

for Test Variable List, and smoker (the original smoking

variable) into the Grouping Variable slot. Define the smok-

ing groups as code 0 for Group 1 and code 1 for Group 2.

Select Mann-Whitney U as the Test Type. Then click OK

and answer these questions: (a) What percentage of smok-

ers versus nonsmokers never got drunk in the prior month?

(b) For the overall sample, what percentage of women got

drunk at least once in the month prior to the interview?

(c) What is the mean rank of “scores” for smokers versus

nonsmokers? (d) What is the value of the U statistic? (e) Is

this significant for a � .05? At what level? (f) What does

the result mean? (g) Could we have analyzed these data

using a chi-square test? Why or why not?

B5. In this analysis, you will be running a Kruskal-Wallis test,

comparing women in the four BMI categories (bmicat)
with regard to the number of miscarriages they had ever

had (miscarr). Number of miscarriages in a ratio-level

variable, but it is skewed, with most women having had no

miscarriages. Begin by running a simple Crosstabs (fol-

lowing steps described previously) to examine the distri-

bution of miscarriages among women in the four BMI

groups. Then run the Kruskal-Wallis test via Analyze ➜
Nonparametric ➜ K Independent Samples Test. Move

miscarr into the slot for Test Variable List, and bmicat into

the Grouping Variable slot. Define the range for the groups

as 1 (Minimum) to 4 (Maximum). Select Kruskal-Wallis

as the Test Type. Click the Options pushbutton and request

Descriptive Statistics. Then click Continue, then OK, and

answer these questions: (a) What percentage of women

had had one or more miscarriage in this sample? (b)

Which BMI group had the highest incidence of a miscar-

riage? Which group had the lowest incidence? (c) What

was the range of values for the miscarriage variable? (d)

What was the mean number of miscarriages? (e) Based on

the mean ranks within the Kruskal-Wallis test, was the re-

lationship between number of miscarriages and BMI lin-

ear—that is, was there an incremental progression of ranks

for miscarriage as BMI got larger? (f) What is the value of

the chi-square statistic for this Kruskal-Wallis analysis?

(g) Is this significant for a� .05? At what level? (h) What

does the result mean? (i) Could we have analyzed these

data using a chi-square test? Why or why not? (j) Could

we have analyzed these data using ANOVA? Why or why

not?

B6. Run Crosstabs for four outcomes in the Polit2SetC dataset.

(Note that this is a different file than for the previous exer-

cises.) The four outcomes are responses to a series of ques-

tions about whether the women had experienced different

forms of abuse in the prior year: verbal abuse, verbalab
(someone yelling at them and putting them down); control,

controld (efforts to control their every move); threats,

threatn (threats of physical harm), and physical abuse,

harmed (being hit, slapped, kicked, or otherwise physically

harmed). We want to test the hypothesis that poverty is a risk

factor for these outcomes, and so poverty will be used as the

independent variable. In the Crosstabs, use poverty as the

Row variable, and the four abuse variables as the Column

variables. Select Chi-square and Risk as the statistics. Use

the output to create a table to present your results, using

Table 10 as a model. (You can choose to report either OR or

RR values.) Then write a paragraph summarizing the results.

† †
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GLOSSARY
Bonferroni correction A correction used to correct the significance level, usually following post hoc tests or tests of different de-

pendent variables with the same sample; the correction involves dividing the desired alpha by the number of tests performed (e.g.,

for = .05 and 3 tests, the corrected alpha would be .017).

Chi-square goodness-of-fit test A statistical test used in several contexts to determine the fit of the data to hypothesized popula-

tion values or a hypothesized model.

Chi-square test of independence A statistical test used to assess whether a relationship exists between two categorical variables

in a contingency table; symbolized as c2.

Dunn procedure A procedure involving the post hoc comparison of all possible pairs of groups following a significant overall test

(e.g., the Mann-Whitney U test or Friedman test), using a Bonferroni correction to adjust the level of significance.

Fisher’s exact test A statistical procedure used to test the significance of the difference in proportions, used when the sample size

is small or cells in the contingency table have no observations.

Friedman test A nonparametric analog of ANOVA, used to test differences in a paired-groups or repeated measures situation

when there are three or more sets of observations.

Kruskal-Wallis test A nonparametric test used to test differences between three or more independent groups, based on ranked

scores.

McNemar test A nonparametric test for comparing differences in proportions when the values are derived from paired (depend-

ent) groups.

Phi coefficient An index describing the magnitude of the relationship between two dichotomous variables.

Wilcoxon signed-ranks test A nonparametric statistical test for comparing two paired groups, based on the relative ranking of

values between the pairs.

Yates’ correction A correction to the chi-square statistic that is used when the expected frequency for any cell of a contingency

table is less than 10.

Cochran’s Q test A nonparametric test for population differences in proportions, used for within-subjects designs when the de-

pendent variable is dichotomous.

Cram’r’s V An index describing the magnitude of relationship between nominal-level data, typically used when the contingency

table to which it is applied is larger than 2 2.

Expected frequency The number of observations that would be expected in a cell of a contingency table if the null hypothesis

were true, that is, if the two variables in the table were unrelated.

Goodness-of-fit test See chi-square goodness-of-fit test.

Mann-Whitney U test A nonparametric test of the differences between two independent groups, based on ranked scores; the non-

parametric analog of the independent sample t test.

Nonparametric statistical A general class of inferential statistical tests that does not involve rigorous assumptions about the dis-

tribution of the variables; most often used with small samples, when data are measured on the nominal or ordinal scales, or when a

distribution is severely skewed. A type of statistical test that tests hypotheses about population group differences in terms of loca-
tions in a score distribution, based on their ranks.

�
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This chapter discusses the inferential aspects of correlation coefficients, and introduces the closely related topic

of linear regression.

PEARSON’S r AND INFERENTIAL STATISTICS

Suppose we were interested in examining the relationship between widows’ grief resolution following their hus-

bands’ death (the dependent variable) and the length of their husbands’ illness prior to death (the independent

variable). We find that, for a sample of 50 widows, the Pearson r between scores on a grief resolution scale and

length of spouse’s illness is .26, indicating a modest tendency among women in the sample for longer spousal

illnesses to be associated with more favorable grief resolution. The observed correlation in the sample, however,

does not tell us whether the relationship exists in the population. A correlation of .26 could reflect sampling
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error. We need inferential statistics to assess the probability that there is a population

correlation.

The Null and Alternative Hypotheses

The basic and most widely tested correlational null hypothesis is that there is no

relationship between the two variables in the population. When there is no relation-

ship, the correlation is zero. The population correlation coefficient is symbolized as

r—rho (the lowercase Greek r), so we can formally state the null hypothesis as follows:

H0: r� .00

The alternative hypothesis is that there is a relationship between the two variables.

The nondirectional alternative hypothesis is:

H1: r� .00

This alternative hypothesis does not predict the nature of the relationship

between the two variables—it is nondirectional. If we had an a priori reason for

hypothesizing the direction of the relationship, the alternative hypothesis could specify

that direction. That is, we could test the hypothesis that r is greater than zero (if we

had reason to believe that the variables were positively correlated) or that r is less

than zero (if we expected the variables to be negatively correlated).

In testing the null correlation hypothesis, the sample correlation coefficient r is

used as the estimate of r. The statistic can be compared to a sampling distribution to

determine whether its value is “improbable” if the null hypothesis is true.

A theoretical sampling distribution of a correlation coefficient can be con-

structed in the same fashion as other sampling distributions. One has to imagine

drawing an infinite number of samples of a specified size and plotting the values of

the correlation coefficients in a frequency distribution. The mean of the sampling

distribution of the correlation coefficient is approximately r, the true population

correlation. When r� 0 (i.e., when the null hypothesis is true), the sampling distri-

bution is approximately normal with the mean centered on 0.0. Statisticians have

developed tabled values of r to test the null hypothesis that a population correlation

is zero.

Assumptions and Requirements for Pearson’s r

Pearson’s r is appropriate when both variables are measured on approximately an in-

terval level or on a ratio level. As you know, Pearson’s r is suitable for detecting

linear relationships between two variables.

The test of the null hypothesis that r � .00 is based on several assumptions.

First, as with other tests, it is assumed that participants have been randomly and in-

dependently sampled from a population. Second, the variables being correlated (X
and Y) are assumed to have an underlying distribution that is bivariate normal—
that is, scores on variable X are assumed to be normally distributed for each value of
variable Y, and vice versa. Finally, scores are assumed to be homoscedastic—that

is, for each value of X, the variability of Y scores must be about the same, and vice

versa. Bivariate normality is not easy to test, but fortunately failure to meet this as-

sumption typically has only a small effect on the validity of the statistical test, partic-

ularly when the sample size is larger than 15.
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Testing the Significance of Pearson’s r

Here we discuss using Pearson’s r as an inferential statistic.

Earlier, we presented an example in which the correlation between widows’

score on a grief resolution scale and husband’s length of illness in a sample of

50 widows was .26. Can we conclude that a correlation exists in the population, or

does the correlation of .26 in the sample reflect sampling error? To test the null hy-

pothesis that the population correlation is zero against the alternative hypothesis that

it is not, we compare the calculated test statistic (r) against a critical value for r in the

appropriate table (Table 6 of Appendix: Theoretical Sampling Distribution Tables).

First, however, we must calculate degrees of freedom. For Pearson’s r, the formula is

as follows:

df � N � 2

In our example, there are 48 degrees of freedom (50 � 2 � 48). For a nondi-

rectional (two-tailed) test with a � .05, we find in column 3 of the table that the

critical value of r with df � 48 is between .273 and .288 (i.e., between the values for

45 and 50 degrees of freedom). The obtained value of r (.26) is smaller than .272, so

we must accept the null hypothesis that the population correlation is zero. There is

a greater than 5% probability that a correlation coefficient of .26 is the result of

sampling error, and thus we cannot conclude that the length of a spouse’s illness is

related to a widow’s grief resolution in the population (the actual p was .07 for a

two-tailed test).

If we had tested a directional hypothesis, the outcome would have been differ-

ent. If theory or prior research had led us to hypothesize in advance that grief resolu-

tion would be greater for widows whose husbands were ill for longer periods prior to

death, we would find in column 2 of Table 6 of Appendix: Theoretical Sampling

Distribution Tables that the critical value for a directional (one-tailed) test with a �
.05 would be about .233. The computed value of r is greater than this critical value,

so the null hypothesis would be rejected. We reiterate that it is inappropriate to use

the critical values for a directional test after r has been computed if a directional hy-

pothesis was not specified in advance.

Note that when we accept a null hypothesis, we cannot conclude that there is

no relationship between the two variables in the population. The possibility of a

Type II error—the incorrect acceptance of the null hypothesis—still remains.

Moreover, there is also a possibility that the variables are related in the population,

but in a nonlinear fashion. The acceptance of the null hypothesis should, as always, be

treated conservatively.

Testing Differences Between Two Correlations

Researchers most often want to test the null hypothesis that the population correla-

tion is zero, but other hypotheses can also be tested. The most common alternative

involves a test of the equivalence of two independent correlations. In our example of

grief resolution, all participants were widows. Suppose we did another study with a

sample of 50 widowers, using the same measure of grief resolution, and obtained a

correlation coefficient of .45.

The question is whether the difference in observed correlations for men versus

women occurred simply as a function of chance, or whether there is a true popula-

tion difference between men and women in the relationship between grief resolution
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and length of spouse’s illness. In this situation, the null hypothesis being tested is as

follows:

H0: rA � rB

where rA � population correlation for group A (widows)

rB � population correlation for group B (widowers)

When r is not equal to zero—which this null hypothesis assumes—the sam-

pling distribution of the correlation coefficient is skewed rather than approximately

normal, and therefore the same table that we used to test the basic hypothesis of no

relationship between variables is no longer appropriate. The statistician Fisher,

however, developed a logarithmic transformation of r (called the r-to-z transfor-
mation) that allows us to use the normal distribution for comparing two correlation

coefficients.

Table 7 of Appendix: Theoretical Sampling Distribution Tables presents values

for transforming correlation coefficients into values of z. To use this table, we must

first find the value of r, and then read directly to the right the corresponding value of

z. From this table we find that for r � .26 (widows), zA � .266. For r � .45 (widow-

ers), zB � .485. With these transformed z values, the following formula can be used to

compute a test statistic (zobs) for the significance of the difference between the two:

In our present example, the computed zobs statistic is 1.06 (computation not

shown), which must now be compared to the critical value from the normal distribution

(Table 1 of Appendix: Theoretical Sampling Distribution Tables). For a � .05, that

critical value is 1.96. Our value of zobs is less than the critical value, so the null hypoth-

esis is retained. We cannot conclude that the correlation between grief resolution and

length of spouse’s illness is different for widows and widowers in the populations.

TIP: A useful interactive Web site for computing the significance of
differences between two independent correlations is http://peaks
.informatik.uni-erlangen.de/cgi-bin/usignificance.cgi.

The Magnitude and Nature of Relationships

Unlike most other inferential statistics, Pearson’s r directly conveys information

about the magnitude and nature of the relationship between variables. The nature of

the relationship is indicated by the sign of the correlation coefficient. A negative sign

indicates that high values on one variable are associated with low values on the sec-

ond. A positive sign (or a coefficient without a sign, which by convention is assumed

to indicate a positive correlation) indicates that high values on X are associated with

high values on Y.

The magnitude of the relationship between variables is directly indicated by

the absolute value of Pearson’s r. The higher the absolute value of the correlation

coefficient, the stronger the relationship. As you know, however, magnitude is

z obs �
�zA � zB�

B
1

nA � 3
�

1

nB � 3
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often expressed in terms of r2, which is sometimes called the coefficient of deter-
mination.

As you know, eta2 is the ratio of explained variance (SSExplained) to total vari-

ance (SSTotal), and r2 is directly equivalent to eta-squared. Thus:

The coefficient of determination, then, tells us the proportion of variance in

variable Y that is associated with variable X—the proportion of variance that is

shared by the two variables. Thus, in the example we have used in this chapter where

r � .26, we could say that about 7% of the variability in grief resolution is shared by

(explained by) variability in spouse’s length of illness (.262 � .068).

When comparing the magnitude of different correlations, it is more appropriate

to use r2 than r. For example, suppose the correlation between widows’ grief resolu-

tion and their age was .13—half the value of the correlation between grief resolution

and spouse’s length of illness. Yet, length of illness explains four times as much of

the variance in grief resolution scores as widow’s age (.068 versus .017), and this is

a more informative and meaningful comparison.

Precision and Pearson’s r

It is possible, although cumbersome, to compute a confidence interval around r.
The calculation of a CI requires converting r to z using the r-to-z transformation,

calculating the standard error for z using a formula (1 � ), computing

confidence limits around z by multiplying the SE by 1.96 for a 95% CI, then con-

verting the calculated confidence limits back to values of r. This effort can be

avoided, however, by using an interactive Web site that does the calculations for

you (e.g., http://faculty.vassar.edu/lowry/rho.html). In our example of correlating

grief resolution with spouse’s length of illness for 50 widows, r was .26 and the

95% CI is �.02 to .50. This is a wide interval that includes the value of .00, which

corresponds to the null hypothesis. The benefit of calculating the confidence in-

terval is that it makes apparent how imprecise the point estimate of .26 really is.

Power and Pearson’s r

A primary reason for performing a power analysis when planning a study is to learn

how large a sample is needed to minimize the risk of a Type II error. In a situation in-

volving Pearson’s r, the effect size for the power analysis is the estimated value of r.

Thus, we can use the sample correlation coefficient r as the estimate of r, the effect

size. In meta-analyses involving correlations, r can be used directly as the estimated

effect.

For fine determinations of needed sample size, interactive power analysis Web

sites on the Internet are helpful (for example, http://www.quantitativeskills.com/sisa/
statistics/correl.htm). For the sake of convenience, we offer a simple table (Table 1)

for estimating sample size needs for two-tailed tests with a� .05. To use this table to

estimate needed sample size, you would find the estimated r in the top row (for ex-

ample, using r from a pilot study or other similar research), select the desired power

in the leftmost column (typically .80, the shaded row), and find N at the intersection.

2N � 3

r 2 � eta2 �
SSExplained

SSTotal
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TABLE 1 Sample Size and Power as a Function of the Population Correlation Coefficient, 
for Alpha � .05 (Two-Tailed Test)

Estimated Population Correlation (r)

Power .05 .10 .15 .20 .25 .30 .35 .40 .45 .50 .60 .70 .80

.20 499 127 57 32 21 15 12 9 7 6 5 4 3

.30 823 207 92 53 34 24 18 14 11 9 7 5 4

.40 1163 292 130 73 47 32 24 18 15 12 9 6 5

.50 1533 383 171 96 61 42 31 24 18 15 11 8 6

.60 1956 489 217 122 78 54 39 30 24 19 13 9 7

.70 2463 614 272 152 97 67 49 37 29 23 16 11 8

.80 3149 785 347 194 123 85 62 47 36 29 19 13 10

.90 4200 1047 463 258 164 112 81 61 47 37 25 17 12

The entries in the table indicate the sample size required to achieve the specified power, for the given correlation coefficient.

For example, with r � .25, a sample of 123 participants would be needed to keep risks

of statistical errors to standard levels.

When estimates of r are unavailable from pilot data or prior research, a last

resort is to use the small-medium-large conventions of .10, .30, and .50, respectively.

This corresponds to estimated sample size needs of 785, 85, and 29 participants,

assuming standard criteria for power and alpha. It is probably safest, in the absence

any other information, to estimate no more than a small-to-medium effect size of .20,

which would require a sample size of 194 participants. (Polit and Sherman [1990]

found that the average correlation coefficient across hundreds of nursing studies was

about .20; although not recent, these findings are probably still valid.)

For estimating post hoc power for a completed analysis, you would need to

find a close approximation to the actual sample size in the column corresponding

most closely to the obtained r. For example, in our earlier example in which r was

.26, we would use the column for .25. The actual sample size of 50 is between the

values of 47 and 61 in that column, and so power was between .40 and .50. Using

interactive power calculators, we found that power in this example could be estimated

at .453, which translates to an estimated 55% risk of a Type II error.

Factors Affecting Pearson’s r

Several factors affect the magnitude of Pearson’s r. These factors should be kept in

mind in designing a correlational study and interpreting results of correlational

analyses. One of these factors is the existence of a curvilinear, rather than linear,

relationship between the two. Several other issues are discussed here.

THE EFFECT OF A RESTRICTED RANGE If two variables are linearly related, the

magnitude of the correlation coefficient is reduced when the range of values on one

of the variables is restricted.

This principle can best be illustrated graphically. Suppose we had a sample of

70 smokers and nonsmokers and plotted their weekly number of packs of cigarettes
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Pulmonary
Function

Packs of Cigarettes Smoked Per Week

0 1 2 3 4 5 6 7 8 9 10

Weak negative correlation

11 12 13 14+

Moderately strong negative correlation

r = –.29

r = –.81

FIGURE 1 Illustration of the effect of a restricted range on the correlation coefficient.

smoked against a measure of pulmonary function, as shown in Figure 1. For the

overall sample, the scatterplot suggests a strong negative correlation between weekly

packs of cigarettes and pulmonary function. In fact, the computed r is �.81, a

correlation that is significantly different from zero at p � .001. Now suppose that

instead of using the entire group, we restricted the sample to the 25 people who

smoked at least one pack of cigarettes per day—i.e., at least 7 packs per week. The

figure illustrates that the relationship between cigarette consumption and pulmonary

function is now less clear cut. The scatterplot shows a much weaker negative corre-

lation among the regular smokers. Indeed, the computed correlation coefficient is

�.29, which is not statistically significant from zero for N � 25. Note that a similar

reduction in the correlation would occur if the range for pulmonary function variable

were restricted (e.g., if only those with very high or very low function were included

in the sample).

THE EFFECT OF EXTREME GROUPS When only extreme groups from both ends of

a distribution are included in a sample, the magnitude of the correlation coefficient

may increase. To continue with our example of the correlation between smoking and

pulmonary function, suppose our sample included only nonsmokers and people who

smoked 10 or more packs of cigarettes per week. In this situation, illustrated in

Figure 2, the range of values on both variables is the same as originally, but devia-

tions from the mean are exaggerated because no participants were close to the mean

on either variable. With this extreme-group sample, the correlation is markedly neg-

ative, r � �.96. Thus, when extreme groups from a population have been sampled,

care must be taken not to interpret correlation coefficients as reflecting relationships

for the entire population.

THE EFFECT OF AN OUTLIER When a sample is relatively small, a person with an

extreme value on one or both variables being correlated can have a dramatic effect on

the magnitude of the coefficient. An exaggerated illustration is graphed in Figure 3. In

this example, 11 of the 12 people in the sample had values of 7 or less for both the X
and Y variables. The 12th person, labeled A on the scatterplot, had extremely high

values on both variables. The smaller ellipse surrounding the values without the outlier

suggests a modest correlation—in fact, the actual value of r for these 11 cases is .10.
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Pulmonary
Function

Packs of Cigarettes Smoked Per Week

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14+

r = –.96

FIGURE  2 Illustration of the effect of using extreme groups on the correlation
coefficient.

X

r = .10
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FIGURE  3 Illustration of the effect of an outlier on the correlation coefficient.

When the outlier is included, however, the shape of the outer ellipse indicates a much

stronger relationship. The calculated value of r when the outlier is included is .71—

a dramatically higher, and misleading, correlation coefficient.

When outliers represent legitimate score values rather than data entry or cod-

ing errors, care must be taken in using them in the analysis. Researchers sometimes

analyze their data both ways—with and without outliers—and present both sets of

results when the disparity is great. Barnett and Lewis (1994) suggest alternative

strategies for handling outliers.

Example of outlier effects:

Winkelman, Norman, Maloni, and Kless (2008) did a study of pain measurement

during labor and examined correlations between pain measurement via a 100-point

visual analog scale and dermatome assessment at multiple points in time after

administration of epidural anesthesia. Pearson correlations ranged from .33 at

25 minutes to .55 at 15 minutes. Noting that higher correlations had been found in

earlier research, the researchers speculated that correlations could have been affected

by the presence of several outliers.
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THE EFFECT OF UNRELIABLE MEASURES Virtually all quantitative measures of vari-

ables contain some measurement error. Psychometricians generally refer to this error as

unreliability, and they have developed methods to assess degree of reliability of mea-

sures (a topic we discuss briefly later in this chapter). Measurement error reduces the

magnitude of correlation coefficients, and this effect is called attenuation. Thus, in in-

terpreting modest correlation coefficients, it may be important to consider whether the

magnitude might have been diminished by the use of relatively weak instruments. Note,

though, that psychometricians have developed a formula for correcting attenuated cor-

relation coefficients. The correction takes the reliability coefficients for one or both vari-

ables into account (see Nunnally & Bernstein, 1994, p. 256).

TIP: Because of the issues discussed in this section, it is wise to examine
scatterplots as a first step in doing a correlation analysis—and to know the
reliability of any scaled measures. Scatterplots will help you detect any
anomalies in the data, such as outliers and extreme values.

OTHER MEASURES OF ASSOCIATION

In addition to Pearson’s r, there are other statistical indexes that describe relationships

between two variables and permit inferences about relationships in the population.

Indeed, we have already discussed some of these. In this section we examine other

measures of bivariate relationships.

Spearman’s Rank-Order Correlation

A statistic known as Spearman’s rank-order correlation is a nonparametric analog

of Pearson’s r. A Spearman correlation is typically used when the dependent variable

is measured on the ordinal scale, or when one or both variables being correlated is

severely skewed or has an outlier. It is also preferred by some researchers when there

are fewer than 30 cases.

Suppose that we wanted to examine the correlation between nursing students’

class rank at graduation and the students’ rating of how likely it is that they would

pursue a graduate degree, on a scale from 0 (extremely probable) to 10 (extremely

unlikely). A Spearman’s correlation coefficient (often called Spearman’s rho)

could be computed in such a situation. We use the symbol r S for Spearman’s rho, to

avoid confusion with rho, the population correlation. Some hypothetical data for ten

students are presented in Table 2.

To compute Spearman’s correlation coefficient, both variables must be rank

ordered. The class rank variable is inherently rank ordered, but we must also rank

order students’ ratings of the likelihood of going to graduate school. The rankings

for this variable are shown in Column 3 of Table 2. As we can see, in Column 2,

there was one tie: two students had a rating of 2. When ties occur, the two adjacent

ranks (here, the ranks of 3 and 4) are averaged, and the average rank (here, 3.5) is as-

signed to both people. In the next step, the difference between the ranks for the two

variables (D) is taken (column 5), and then the difference is squared (column 6). The

sum of the squared differences is then used in the following formula:

rS � 1 �
6 1©D2 2

N 1N 2 � 1 2

213



Correlation and Simple Regression

TABLE 2 Example of Spearman’s Rank-Order Correlation Calculation

(1) 
Student

(2) 
Grad School

Rating*

(3) 
Rank of

Rating (X )

(4) 
Class

Rank (Y )
(5)

D (X – Y)
(6) 

D2 (X – Y)2

1 2 3.5 1 2.5 6.25

2 1 2 2 0 0.00

3 0 1 3 �2 4.00

4 5 7 4 3 9.00

5 3 5 5 0 0.00

6 2 3.5 6 �2.5 6.25

7 4 6 7 �1 1.00

8 6 8 8 0 0.00

9 8 10 9 1 1.00

10 7 9 10 �1 1.00

ΣD2 � 28.50

*Student’s rating of likelihood of pursuing a graduate degree, from 0 (extremely probable) to 10

(extremely unlikely)

For the data presented in Table 2, we find that the Spearman correlation is:

Like Pearson’s r, Spearman’s rS can range between �1.00 through 0.00 to

�1.00. A high positive value, such as we obtained indicates a strong tendency for the

paired ranks to be similar; a negative value indicates a tendency for low ranks on one

variable to be associated with high ranks on the other.

The null hypothesis when using Spearman’s rho is that there is no linear rela-

tionship between the two sets of ranks, i.e., that the population correlation (r) is

zero. To test the hypothesis, the computed value of rs can be compared to critical

values presented in Table 8 of Appendix: Theoretical Sampling Distribution Tables.

With a sample size of 10, the critical value for a� .05 (for a two-tailed test) is .648.

The computed value is greater than the critical value, so we can reject the null hy-

pothesis and conclude that there is a population correlation between a student’s rank

in class and his or her stated probability of going to graduate school.

The table of critical values for the Spearman correlation can only be used

when N � 30 and 	 5. When there are more than 30 cases, a reasonably good ap-

proximation of significance can be obtained by using the table of critical values for

Pearson’s r with N � 2 degrees of freedom.

Example of Spearman’s rho:

Li and coresearchers (2008) tested relationships between Chinese nursing students’

knowledge about, attitudes toward, and practice intentions with regard to HIV/AIDS.

Using Spearman’s rank-order correlations, they found a modest relationship (rs � .14,

p � .036) between attitudes and practice intentions, but no other significant relation-

ships were found.

rS � 1 �
6 128.5 2

10 1102 � 1 2 � 1 �
171.0

10 199 2 � .83
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Nonparametric Correlations
Correlations

*. Correlation is significant at the 0.05 level (2-tailed).
**. Correlation is significant at the 0.01 level (2-tailed).

Rating of 
grad school
likelihood

Class
rank

Kendall’s 
tau_b

Rating of grad
school likelihood

Correlation Coefficient
Sig. (2-tailed)
N

1.000
.

10

.629*
.012
10

Class rank Correlation Coefficient
Sig. (2-tailed)
N

.629*
.012
10

1.000
.

10

Spearman’s 
rho

Rating of grad 
school likelihood

Correlation Coefficient
Sig. (2-tailed)
N

1.000
.

10

.827**
.003
10

Class rank Correlation Coefficient
Sig. (2-tailed)
N

.827**
.003
10

1.000
.

10

FIGURE  4 SPSS printout for Spearman’s rho and Kendall’s tau.

Kendall’s Tau

Spearman’s rank-order correlation is somewhat less accurate than might be desired

because the approximations to theoretical sampling distributions are imperfect, espe-

cially for samples of intermediate size. For this reason, some researchers and statis-

ticians prefer another index of rank-order correlations, known as Kendall’s tau
(symbolized as τ). While Kendall’s tau has advantageous statistical properties, it is

somewhat more complicated to compute, and formulas will not be presented here.

Most statistical software packages, however, have a program to computes tau

as well as Spearman’s rho. Figure 4 presents SPSS output for both, using the data in

Table 2 (created from Analyze ➜ Correlate ➜ Bivariate). This figure shows that the

value of tau was smaller than that for rS. Whereas rS � .827 (the same as our manu-

al calculations), Kendall’s tau was .629. Significance levels also differed, although both

were significant for a � .05.

Example of Kandall’s tau:

Soundy, Taylor, Faulkner, and Rowlands (2007) examined the adequacy of a 7-day

recall measure of physical activity as a measure of exercise habits and physical fit-

ness in individuals with severe mental illness. They used Kendall’s tau to measure

the correlations between recall data and triaxial accelerometry data but found only

one significant correlation, that for total energy expenditure (tau � .43).

TIP: Another type of correlation is the point-biserial correlation
coefficient, rpb. This correlation coefficient summarizes the strength and
direction of a relationship between a dichotomous nominal-level variable
(e.g., smoker versus nonsmoker) and an interval- or ratio-level variable
(e.g., a measure of pulmonary function).
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FIGURE  5 Examples of linear relationships with different slopes and intercepts.

SIMPLE LINEAR REGRESSION

The term regression refers to techniques that are used to analyze relationships

between variables and to make predictions about values of variables. Regression

procedures are the foundation of many complex statistics. In this chapter, we in-

troduce regression concepts and describe the link between correlation and 

regression.

Equation for a Straight Line

When a relationship between two variables is linear and perfect, knowledge of the

value of one variable allows you to know or predict the value of the second variable

with complete accuracy. This is because the relationship can be characterized by a

straight line, for which there is a simple equation. Let us consider an example con-

cerning a sponsor who donated $1 to a school’s athletic fund for every hour that stu-

dents volunteered to work at the school’s health clinic. As shown in Figure 5(A), the

value of X (hours volunteered) is always equal to Y (dollars donated). The relation-

ship between the two variables is linear and perfect, and can be characterized by the

following formula:

Y � X

Based on this equation, we would be able to predict perfectly the amount of

the donation if we knew the number of hours students volunteered. For 98 hours of

volunteer time, for example, the donation would be $98.

Now suppose that the donor agreed to pay $2.00 for every 1 hour volunteered.

The relationship between hours and dollars for this arrangement, which again is
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perfect and linear, is shown in Figure 5(B). Formally, this relationship between X and

Y can be stated as follows:

Y � 2X

Now, for 98 hours of volunteer time, the donation would be $196 (2 
 $98). If

you compare the graphs for the two equations in Figures 5(A) and (B), you can see

that the lines have different angles: The slope of the line is sharper in the second

graph. Thus, relationships can be linear and perfect and yet differ with regard to the

slopes of the lines that characterize them.

In both situations, if there were no student volunteers, there would be no dona-

tion. Suppose, however, that the donor decided to start with a flat $5 donation, and

then added $2.00 for every hour worked. This relationship—which is again perfect

and linear—is graphed in Figure 5(C). The slope of the line is identical to the slope

shown in Figure 5(B), but the point at which the line crosses the Y axis—called the

intercept or intercept constant—is 5 in graph C rather than 0. The relationship

shown in graph C can be stated as follows:

Y � 5 � 2X

Using this equation, we would find that for 98 hours worked, the amount of the

donation would be $201 ($5 � 2 
 $98). Thus, we can see with the three situations

graphed in Figure 5 that linear relationships can differ in terms of the values of both

slopes and intercepts.

Any straight line can be described in terms of its slope and intercept. The gen-

eral equation for a straight line, sometimes called the linear model, is as follows:

Y � a � bX

where a � the intercept constant

b � the slope of the line

In the first situation shown in graph A, the value of the intercept constant a is

0 and the value of the slope b is 1; in graph B, a � 0, and b � 2; and in graph C, a � 5,

and b � 2.

When plotted on coordinates with an X and Y axis, a slope and an intercept can

always describe the relationship between two perfectly correlated variables. When

variables are negatively correlated, the slope of the line—the value of b—is also neg-

ative. For example, suppose a professor gave students a 10-question test, with each

question worth 10 points. The relationship between number of questions wrong on

the test and test grade, graphed in Figure 6, can be stated as follows:

Y � 100 � 10X

where Y � test grade

X � number of items wrong

A student with four questions wrong would have a grade of 60; a student with no

questions wrong would have a grade of 100.

The usefulness of having an equation that characterizes a linear relationship is

that for any value of X, we can determine or predict the value of Y. This ability for

the linear model to make predictions makes it an attractive model for researchers.
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The Basic Regression Equation

In research, relationships between variables are often linear, but they are almost

never perfect. When a correlation between two variables is not perfect, the statistical

technique of regression can be used to identify the straight line that runs through the

data points with the best possible fit, using a statistical criterion called least squares.

(We discuss this criterion at greater length later.)

To explain regression procedures, we will consider an example regarding the

correlation between nursing students’ scores on a midterm and final statistics exam.

Data for this example are presented in Table 3. The midterm scores (X) are shown in

column 1, and the final exam scores (Y) are shown in column 4. Applying the

Pearson r formula to these data, we found that the correlation coefficient between the

two sets of test scores is .955, an extremely high—but not perfect—correlation.

The regression equation is the formula for the best-fitting straight line to

characterize the linear relationship between X and Y. The basic linear regression

equation is as follows:

Y� � a � bX

where Y� � predicted value of variable Y
a � intercept constant

b � slope of the line

X � actual value of variable X

The regression equation is identical to the equation for a straight line, except

that it is an equation that predicts values of the variable Y (Y�, called Y predicted)

rather than being based on actual values. This is the equation for the regression of Y
(the dependent variable) on X (the independent or predictor variable).

To use the regression equation, we must solve for a, the intercept constant and

b, the slope, which is called a regression coefficient in the context of a regression

equation. The formula for the regression coefficient is as follows:

b �
©xy

©x 2

0 1 2 3 4 5 6 7 8 9 10

Y
(Test

Score)

X (Number of Questions Wrong)

Equation: Y = 100 – 10X
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90
80
70
60
50
40
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20
10

0

FIGURE  6 Example of a negative linear relationship.
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TABLE 3 Calculations for Simple Linear Regression Example: 
Students’ Final Exam Scores Regressed on Midterm Scores

(1) 
X

Midterm

(2) 
x

(X � )X

(3)
x2

(4)
Y

Final

(5)
y

(Y � )Y

(6) 
y2

(7)
xy

(8)
Y�

(9)
e

(Y � Y�)

(10)
e2

2 �3 9 3 �3 9 9 3.3 �0.3 0.09

6 1 1 7 1 1 1 6.9 0.1 0.01
5 0 0 6 0 0 0 6.0 0.0 0.00
9 4 16 8 2 4 8 9.6 �1.6 2.56

7 2 4 9 3 9 6 7.8 1.2 1.44
9 4 16 10 4 16 16 9.6 0.4 0.16
3 �2 4 4 �2 4 4 4.2 �0.2 0.04
4 �1 1 6 0 0 0 5.1 0.9 0.81

1 �4 16 2 �4 16 16 2.4 �0.4 0.16

4 �11 1 5 �1 1 1 5.1 �0.1 0.01

ΣX � 50 0 68 ΣY � 60 0 60 61 ΣY� � 60 0.0 5.28

� 5.0X � 6.0Y � 6.0Y¿

r � .955

b �
�xy

�x2
�

61
68

� .90

a � � b � 6.0 � .90(5.0) � 1.5XY

Y� � a � bX � 1.5 � .90X

where b � regression coefficient

x � deviations of X from , the mean of variable X
y � deviations of Y from , the mean of variable Y

In the numerator of this equation, deviation scores for the two variables are ob-

tained, and then all the cross-products of deviation scores are summed. In our example,

this value is 61, shown in column 7 of Table 3. The denominator of the equation is the

sum of the squared deviations for the independent variable X, which in our example is

68, shown in column 3. Thus, the regression coefficient b is 61 � 68, or .90.

Next, we must solve for the intercept constant. The formula is as follows:

where a � intercept constant

� mean of variable Y
� mean of variable X

b � regression coefficient

In our example, the intercept constant would be as follows:

a � 6.0 � .90 (5.0) � 6.0 � 4.5 � 1.5

Thus, the regression equation for the data shown in Table 3 is as follows:

Y� � 1.5 � .90X

X
Y

a � Y � bX

Y
X
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You might be wondering, what is the point of solving this equation? The utility

of regression is that it allows us to make predictions about the values of one variable,

based on values of a second variable. For example, a nursing school faced with selecting

students with the greatest chance of success could predict students’ grade point aver-

age based on their SAT scores using data on both variables from previously admitted

students. The predicted values would not be perfectly accurate unless the correlation

between grade point average and SAT scores were 1.00. In all likelihood, the correla-

tion would not be 1.00. The stronger is the correlation, the better the prediction.

We will illustrate this point using the example in Table 3. Suppose we only had

students’ midterm test scores and wanted to predict how they would perform on the

final exam. For the first student, whose midterm score was 2, we would predict that

the final exam score would be 3.3 [Y� � 1.5 � .90(2) � 3.3]. If we applied the

regression equation to each X value, we would obtain the predicted values of Y
shown in column 8 of Table 3.

When we compare the actual values of Y (column 4) with the predicted values

of Y (column 8), we see that the two are similar, but are identical in only one case

(the third student). The differences between Y and Y�, shown in column 9, are called

the errors of prediction (e) or residuals. In this example, the errors of prediction

are small because the correlation between X and Y is high. When the correlation be-

tween the two variables is perfect, there are no errors of prediction; Y� would always

equal Y exactly. Conversely, when correlations are modest, errors of prediction are

more substantial.

The regression equation is the best representation of the relationship between

X and Y because it results in a line that minimizes the errors of prediction. More pre-

cisely, the regression equation minimizes the sums of squares of the prediction errors,

and hence the origin of the term least squares. (Standard regression procedures are

sometimes called OLS regression, which stands for ordinary least-squares regres-
sion.) In our example, the sum of the squared prediction errors is 5.28, shown at the

bottom of column 10. Any other value of a and b—i.e., any other line drawn through
the data points—would have yielded a larger sum of the squared residuals.

A graphic representation of this regression analysis is shown in Figure 7.

Actual values of X and Y are shown as circles. The line running through the data

points embodies the regression equation. The intercept a crosses the Y axis at 1.5.

X
Equation: Y' = 1.5 + .90X

Y

210 3 4 5 6 7 8 9 10

10
9
8
7
6
5
4
3
2
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0

FIGURE  7 Graphic representation of a regression equation.
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The regression coefficient b is the slope of the line. With b � .90, the line slopes

such that for every 5 units on the X axis, we must go up 4.5 units (.90 
 5) on the

Y axis. Because the line embodies the equation, we can use it to determine Y values.

We would first find a value of X on the X axis, and then find the point directly verti-

cal on the regression line. Next, we would obtain the predicted value of Y by read-

ing over horizontally to the Y axis. For example, if we wanted to predict a final

exam score based on a midterm score of 5, we would find a Y � of 6 [i.e., 1.5 � .9(5)

� 6], indicated by a star on the regression line. We could use this line to make pre-

dictions about any value of X, just as the regression equation could be used for this

purpose.

The Standard Error of Estimate

When a regression equation is used to make predictions, it is useful to have an index

indicating the accuracy of predictions. The standard error of estimate (SE esti-

mate) is an index that indicates how “wrong,” on average, a predicted value of Y is

expected to be. The formula for the SE estimate is as follows:

where � standard error of estimate for Y regressed on X

Σ (Y � Y�)2 � sum of the squared errors of prediction for Y� (e2)

N � number of cases (sample size)

For our example of predicting final exam scores from midterm scores (Table 3),

the standard error of estimate would be as follows:

Thus, the average amount of error in predicting final exam scores would be less

than one point. The smaller the SE estimate, the more accurate predictions are

likely to be.

Correlation and Regression

The formula we just presented for the standard error of estimate is a good definitional

formula because it shows that the index represents the average of all deviations

around predicted values of Y. An alternative formula is more convenient for compu-

tational purposes, and this formula is useful for discussing the link between correla-

tion and regression:

where � standard error of estimate for Y regressed on X

y2 � sum of the squared deviations for Y, i.e., Σ(Y � )2

r2 � squared correlation coefficient between X and Y
N � number of cases (sample size)

Y

sy #x

sy #x � B
�y2 11 � r 2 2

N � 2

sy #x � B
5.28

8
� .81

sy #x

sy #x � B
� 1Y � Y¿ 2 2

N � 2
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From this formula, we can see that the larger the correlation coefficient, the

smaller the numerator, and hence the smaller the SE estimate. In our example, using

calculations shown in Table 3, the SE estimate would be as follows:

If the correlation between midterm and final exam scores were .80 rather than .955

with all else constant, the SE estimate would be twice as large—1.64 rather than .81.

Another way to demonstrate the link between correlation and regression is to

return to our discussion about the meaning of r2. As noted previously, the square of

the correlation coefficient tells us the proportion of variance in Y that can be explained

or accounted for by X. In our example, 91% of the variability in final exam scores

(.9552) is accounted for by variation in midterm scores. The remaining 9% of Y’s

variability is from other sources. We can demonstrate that the squared residuals or

errors of prediction (Column 10 of Table 3) constitute 9% of Y’s variability. Column

6 shows us that the sum of the squared deviations of the Y values from the mean of Y,
which is the total amount of Y’s variability, is 60. Thus, as a proportion of total vari-

ability the squared residuals are as follows:

These calculations reinforce the point that the stronger the correlation between

two variables, the smaller the errors of prediction—and consequently, the better the

regression-based predictions.

The Computer and Simple Linear Regression

Statistical software can readily perform calculations for correlation and regression.

We illustrate a computer printout for a regression procedure, using the data from the

example of students’ midterm and final exam scores in statistics. We discuss only a

portion of the printout here. This printout was obtained through the SPSS commands

Analyze ➜ Regression ➜ Linear.

Panel A of Figure 8 presents basic descriptive statistics (means and SDs) for

the dependent variable Final and the independent variable Midterm. Panel B shows

the correlations. The correlation between Final and Final (the variable correlated

with itself) is 1.000, and the correlation between Midterm and Final is .955, the same

value we calculated manually. Next, the printout shows that the correlation of .955 is

highly significant (.000), and that there were 10 people in the sample.

Panel C (Model Summary) again shows that the r between the two variables is

.955 and that r2 is .912. The next box shows that the “Adjusted R Square” is some-

what lower, .901. The SPSS regression program calculates an r2 that is adjusted to

reflect more closely the goodness-of-fit of the regression model in the population;

the adjustment uses a formula that involves sample size and number of independent

variables. The last box of Panel C shows the SE estimate to be .812, the value we

obtained through manual calculations.

Panel D (ANOVA) shows that the overall regression is statistically significant:

The value of F is 82.919, significant at the .000 level. We can see here, though, that

the total sums of squares for the dependent variable has been decomposed into (a)

5.28

60
� .09 � 1 � r 2

sy #x � B
60 11 � .9552 2

8
� B

60 11 � .912 2
8

� .81
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B Correlations

Regression
A Descriptive Statistics

Mean
Std.

Deviation N

Final 6.00 2.582 10

Midterm 5.00 2.749 10

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.B Std. Error Beta

1 (Constant) 1.515 .556 2.727 .026

Midterm .897 .099 .955 9.106 .000

Model
Sum of
Squares df

Mean
Square F Sig.

1 Regression 54.721 1 54.721 82.919 .000a

Residual 5.279 8 .660

Total 60.000 9

Model R
R 

Square
Adjusted R

Square
Std. Error of 
the Estimate

1 .955a .912 .901 .812

C Model Summary

a. Predictors: (Constant), Midterm

D ANOVAb

a. Predictors: (Constant), Midterm
b. Dependent Variable: Final

E Coefficientsa

a. Dependent Variable: Final

Final Midterm

Pearson

Correlation

Final

Midterm

1.000

.955

.955

1.000

Sig. (1-tailed) Final

Midterm

.

.000

.000

.

N Final

Midterm

10

10

10

10

FIGURE  8 SPSS printout of simple regression analysis.

the sum of squares for regression (54.721) and (b) the sum of squares of the residu-

als (5.279), the value shown in column 10 of Table 3, to greater precision). Together,

these two components total 60.000, which is the sum of the squared deviations for Y
(column 6 of Table 3).
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TABLE 4 Correlations Between Selected Nursing Workload Variables and Adverse Nurse Outcomes (N � 784)

Selected 
Adverse Outcome Unit Caseload

Nurse’s Patient
Caseload

No. of Unstable
Patients

No. of Events,
Extraordinary Life 

Support

Self-injury .01 .09* .15** .08*
Physical exhaustion .00 .01 .10** .01
Patient/family complaints .12** .09* .10** .13**
Verbal abuse by patient or visitor .10** .06 .07* .11**
Verbal abuse by physician or staff .05 .08* .10** .12**
Physical abuse by patient or visitor .01 .02 .11** .16**

Adapted and abridged from Table 5, Al-Kandari et al., 2008

* p � .05

** p � .01

Finally, Panel E (Coefficients) shows the regression equation. The regression

coefficient (b) for the X variable (Midterm) is .897, which we rounded to .90 in our

hand calculations. The intercept constant is shown here as 1.515, which differs

slightly from our calculated value of 1.50 because we used the rounded value of b
(.90) in the formula to calculate a.

RESEARCH APPLICATIONS OF CORRELATION 
AND REGRESSION

Correlation coefficients are frequently displayed in research reports; they are effi-

cient indexes because they summarize concisely the magnitude, nature, and direction

of a relationship between two variables. This section describes some of the

applications of bivariate correlation and simple linear regression, and discusses

methods of displaying the results of such analyses in reports.

The Uses of Bivariate Correlation and Simple Regression

Correlation and regression analysis are used by researchers in a variety of 

applications.

1. Answering research questions The primary use of correlation procedures is

for answering research questions and testing hypotheses. Many different types

of substantive questions have been addressed through inferential correlation

analysis. For example, Al-Kandari and Thomas (2008) looked at correlations

between adverse nurse outcomes (e.g., physical exhaustion, needlestick in-

juries) and factors such as nurses’ workload and shift rotation in Kuwaiti

hospitals. Many correlations were modest but significant because of a large

sample size—for example, self-injury was correlated with number of unstable

patients in a nurse’s caseload (r � .15, p � .01). Table 4 highlights a few other

results.

2. Making predictions Applied research is sometimes expressly performed to

develop a regression equation for making predictions about some outcome.

For example, a measure of depression at intake might be used to predict the

length of hospitalization of psychiatric inpatients.
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1 For a more detailed discussion of methods of evaluating the reliability and validity of instruments, con-

sult a research methods book (e.g., Polit & Beck, 2008), a book on scale development (e.g., DeVellis,

2003), or a book on psychometrics (e.g., Nunnally & Bernstein, 1994).
2 The most widely used reliability coefficient is Cronbach’s alpha, which is an index of internal consis-

tency reliability. Cronbach’s alpha is not a correlation coefficient in the usual sense, but has similar prop-

erties.

3. Assessing instruments’ reliability Correlation procedures are used in a vari-

ety of ways to provide information about the quality of measures used in nurs-

ing investigations. As one important example, correlations are often used to as-

sess the reliability of research instruments—particularly scales that are

designed to measure psychosocial traits (e.g., health beliefs, coping, social

support, hopelessness).1

Reliability concerns the degree of dependability or accuracy with

which an instrument measures the attribute it is designed to measure. The re-

liability of an instrument can be assessed in various ways, several of which

involve calculating Pearson’s r . In the context of a reliability assessment, the

correlation coefficients are called reliability coefficients.2 Like correlation

coefficients, reliability coefficients can range between �1.00 and �1.00, but

they are almost always positive. The higher the coefficient, the greater is the

reliability of the instrument. Reliability coefficients generally should be at

least .70, and in some contexts may need to be even higher to be considered

acceptable.

One approach is test-retest reliability. When researchers are interested

in assessing an instrument’s stability over time, they administer it to the same

people on two separate occasions. The correlation coefficient between individ-

uals’ scores at time 1 and time 2 provides evidence of the instrument’s test-

retest reliability.

Another situation is the assessment of agreement between observers’

ratings. In some assessments of interrater reliability, two observers provide

independent ratings about key phenomena. The correlation coefficient

between the two sets of ratings is one method to describe the degree of inter-

rater agreement. For example, Toffolo and coresearchers (2008) investigated

measurements of upper limb ulcer diameter and area. They studied both intra-

observer measurements (those by the same person at several points in time)

and interobserver measurements (those by different observers) to assess

measurement reliability, using both Pearson’s r and Spearman’s rho. They

found rs � .81 for intra-observer reproducibility and rs � .76 for interobserver

reproducibility.

4. Assessments of validity Validity concerns the degree to which an instrument

is measuring what it is supposed to be measuring. Correlation plays an impor-

tant role in validity assessments. For example, a researcher might want to as-

sess the criterion-related validity of an instrument, an approach that involves

examining the relationship between an instrument and a practical criterion. For

example, Cha, Kim, and Burke (2008) evaluated the Korean translation of the

Condom Self-Efficacy Scale. They tested the criterion validity of the scale by

correlating scores with actual condom use and with scores on an intention to use

condoms scale, using Spearman’s rank correlations. In both cases, correlations

were significant at p � .001.

One of the most important aspects of validity is construct validity,

which involves evidence that an instrument is really measuring the underlying
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construct of interest. Many approaches to establishing the construct validity of

an instrument rely on the calculation of correlation coefficients. For instance,

Choi, Phillips, Figueredo, Insel, and Min (2008) developed and tested the

Korean Women’s Abuse Intolerance Scale and evaluated construct validity by

testing a series of hypotheses via Pearson’s correlations. For example, they

hypothesized that women who are more intolerant of their husband’s abusive

behaviors would have lower marital satisfaction, and this hypothesis was sup-

ported (r � �.88, p � .001). Several other sophisticated construct validity

approaches, such as the multitrait-multimethod matrix method (MTMM) rely

on correlations (see Polit & Beck, 2008).

5. Variable selection for complex models As you know, researchers some-

times undertake complex multivariate analyses to assess the contribution of

multiple independent variables, taken simultaneously, in predicting an out-

come. If the ultimate analysis is a multipredictor regression, researchers

would almost surely begin with simple bivariate correlation analysis. For

example, Morrison-Beedy, Carey, Feng, and Tu (2008) sought to predict

sexual risk behaviors among young women. They developed complex mod-

els, but began by examining bivariate correlations using Pearson’s r.

The Presentation of Correlation 
and Simple Regression in Research Reports

As you know, correlational analyses are not usually displayed in scatterplots, but are

most often reported either directly in the text, if there are only a handful of coeffi-

cients, or in a table. In the text, the write-up of an inferential correlational analysis

should include the name of the test (especially if Pearson’s r was not used), the value

of the coefficient, degrees of freedom, and level of significance. As an example, the

results for the fictitious study on grief resolution among widowed people might be

reported as follows:

Among the 50 widows in the sample, the correlation between the deceased hus-

bands’ length of illness prior to death and the widows’ grief resolution was positive

but modest, r � .26. With 48 df, this correlation was nonsignificant at conventional

levels for a two-tailed test (p � .07).

Tables for correlational analyses often involve a display of a correlation

matrix. When a correlation matrix includes inferential information, as it usually

does, asterisks are typically placed next to statistically significant coefficients. The

number of asterisks corresponds to a significance level specified in a key at the bot-

tom of the table. A fictitious example of such a table for five variables is presented in

Table 5. This table shows that one correlation (between functional disability and per-

ceived purpose in life) was significant at the .001 level; two were significant at the

.01 level; and one (between social support and perceived purpose in life) was signif-

icant at the .05 level. Six of the correlations—those without any asterisks—were not

statistically significant at conventional levels.

Sometimes an entire matrix is not substantively interesting, but only correla-

tions between selected variables are highlighted—for example when there are several

variables conceptualized as outcomes and several conceptualized as predictors.

Table 4 illustrates this approach for the study of factors related to adverse nurse out-

comes. In this table, the top row shows independent variables (workload factors) and

the first column lists several adverse nurse outcomes. Researchers may also present

correlations for different subgroups of people in a table. In such situations, they typ-
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ically construct the table with column headings that identify the subgroups (e.g.,

men versus women), with the rows identifying the variables being correlated with a

specified focal variable.

Published research reports rarely present the results of a simple linear regression,

in large part because multiple regression is more common. When appropriate, however,

researchers could report regression equations in the text (e.g., “The regression equation

for predicting final exam scores from midterm scores was found to be Y� � 1.5 � .90X”).

Correlation and Simple Regression

Research Example

Correlations are widely reported in the research literature,

especially in studies that are nonexperimental. Here we

describe a recent study that addressed its primary research

questions through correlational procedures.

Study: “Relationships among pain, sleep disturbances,

and depressive symptoms in outpatients from a compre-

hensive cancer center” (McMillan, Tofthagen, &

Morgan, 2008)

Study Purpose: The purpose of this study was to de-

scribe the pain experience of outpatients with cancer,

and to explore relationships of pain with sleep distur-

bance, depression, and patient functioning.

Methods: Data were obtained from a sample of patients

(N � 85) at a large cancer center in southeastern United

States. Eligible participants had to have a diagnosis of

cancer, and present with pain intensity of at least 3 on a

0–10 scale. All participants completed questionnaires

that included measures of the presence, severity, and dis-

tress of both pain and sleep disturbances; a scale that

measured the degree to which pain interferes for func-

tioning; and a scale to assess symptoms of depression

(the CES-D). The report included information about the

reliability of the scales used in the study. For example,

test-retest reliability for the “pain at its worst” measure

was high (r � .93).

Analysis: The researchers used a variety of descriptive

statistics to summarize pain and distress scores in this

sample. Pearson correlations were used to explore rela-

tionships among the key variables.

Results: In this sample, sleep distress was significantly

correlated with pain intensity (r � .37, p � .006) and

pain distress (r � .51, p � .001). Several significant

correlations were found between depressive symptoms

and pain measures. For example, CES-D scores were

significantly associated with pain severity (r � .35, 

p � .001), pain right now (r � .31, p � .002), pain at its

worst (r � .33, p � .002), and pain distress (r � .45, 

p � .001). Depressive symptoms were especially highly

correlated with aspects of pain interference—for exam-

ple, pain interference with relationships (r � .59, 

p � .001), general activity (r � .46, p � .001), and

enjoyment with life (r � .54, p � .001). The authors

concluded that much greater improvements are needed

to assess and treat pain in patients with cancer.

TABLE 5 Example of a Correlation Matrix, Showing p levels

Variable 1 2 3 4

1. Income
2. Age .04

3. Functional disability �.26** .29**

4. Social support .06 �.18 �.09

5. Perceived purpose-in-life .13 �.03 �.33*** .20*

* p �.05 ** p � .01 *** p � .001

Correlation Matrix of Key Study Variables (N � 102)
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Summary Points

• As an inferential statistic, Pearson’s r is typically

used to test the null hypothesis that the correlation

between two variables in the population (symbol-

ized as r, rho) is zero.

• The test of the null hypothesis that r � .00 is

based on several assumptions: random and inde-

pendent sampling, an underlying distribution that

is bivariate normal (scores on variable X are as-

sumed to be normally distributed for each value of
variable Y, and vice versa), and scores that are

homoscedastic (for each value of X, variability of

Y scores must be about the same, and vice versa).

• To test that r is statistically different from zero, the

obtained r is compared to critical values of r with

N � 2 degrees of freedom.

• The equivalence of two correlations in the popula-

tion can be tested by using r-to-z transformations.

• Pearson’s r directly communicates the strength

and nature of the relationship between two vari-

ables. However, the coefficient of determination,

as r2 is sometimes called, indicates the proportion

of variance that is shared by the two variables and

is preferred as the index of the magnitude of the

relationship.

• Several factors can reduce the magnitude of r, in-

cluding the existence of a curvilinear relationship;

a restricted range on one or both variables; and

attenuation resulting from measures with low reli-

ability. The use of extreme groups or the presence

of an extreme outlier can also affect the value of r,
in some cases inflating it.

• Other statistics can be used to describe and test

relationships between two variables. Among these

are Spearman’s rho (rS) and Kendall’s tau (τ),

both of which are nonparametric tests that are used

primarily with ordinal-level variables.

• Correlation is closely linked to linear regression,

a technique used to analyze relationships between

variables and to make predictions about the values

of variables. Regression analysis can be used to

identify the straight line that runs through data

points with the best possible fit.

• The regression equation is Y�� a � bX, where Y�
is Y predicted, a is the intercept constant (the

point at which the line crosses the Y axis) and b is

the slope (angle) of the line. The formulas for

computing a and b are such that the errors of pre-
diction (also called the residuals), when squared,

are minimized. Thus, simple linear regression is

said to use the least squares criterion for deter-

mining the best-fitting line.

• Regression is a useful tool for making predictions

about variables that are linearly correlated. The

standard error of estimate is the index used to

indicate the accuracy of the predictions. The

stronger the correlation between two variables, the

more accurate are the predictions.

Exercises

The following exercises cover concepts presented in this chap-

ter. Answers to Part A exercises that are indicated with a dag-

ger (†) are provided here. Exercises in Part B involve comput-

er analyses and answers and comments are offered on the 

Web site.

PART A EXERCISES

A1. Given the following circumstances, determine whether the

calculated values of r are statistically significant:

(a) r � .29, N � 35, a � .01, two-tailed

(b) r � .50, N � 15, a � .05, two-tailed

(c) r � .12, N � 500, a � .05, two-tailed

(d) r � .55, N � 12, a � .05, one-tailed

(e) r � .44, N � 26, a � .01, one-tailed

A2. For each correlation coefficient below, calculate what pro-

portion of variance is shared by the two correlated vari-

ables:

(a) r � .76

(b) r � .33

(c) r � .91

(d) r � .14

A3. For each coefficient of determination below, calculate the

value of the correlation coefficient:

(a) r2 � .66

(b) r2 � .13

(c) r2 � .29

(d) r2 � .07

†

†

†
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A4. In a random sample of 100 people, the correlation between

amount of daily exercise and weight was found to be

�.21. What would be the likely effect on the absolute

value of the correlation coefficient under the following

circumstances:

(a) The sample is restricted to people who weighed under

180 pounds.

(b) The sample is restricted to people who get virtually

no daily exercise versus those who exercise at least

30 minutes a day.

(c) The mean sample weight is 150 pounds, and one per-

son is added to the sample who weighs 275 pounds.

A5. Suppose that a researcher regressed surgical patients’

length of stay in hospital (Y ) on a scale of functional abili-

ty measured 24 hours after surgery (X). Given the follow-

ing, solve for the value of the intercept constant and write

out the full regression equation: Mean length of stay � 6.5

days; mean score on scale � 33.0; slope � �.10.

A6. Using the regression equation calculated in response to

question 5, compute the predicted value of Y (length of

hospital stay) for patients with the following functional

ability scores:

(a) X � 52

(b) X � 68

(c) X � 23

(d) X � 10

A7. A researcher studying the relationship between maternal

age and length of breastfeeding in a sample of 75 primi-

paras found a correlation of .19, which was not statistically

significant at the .05 level. What was the estimated power

of the statistical test? Conversely, what was the risk that a

Type II error was committed?

A8. Assuming in question A7 that .19 is a good estimation of the

population correlation, what sample size would be needed

in a replication study to achieve power � .80 at a � .05?

PART B EXERCISES

B1. For these exercises, you will be using the SPSS dataset

Polit2SetA. Begin by computing a correlation matrix for

four variables using Analyze ➜ Correlate ➜ Bivariate.

Move the following four variables into the slot for

Variables: the woman’s age at first birth (age1bir), highest

grade completed (higrade), number of hours worked per

week, among women who were employed (workweek),

and family income in the prior month (income). Check to

make sure the following options are selected, as they usu-

ally are because they are the defaults: under Correlation

Coefficients, Pearson; under Test of Significance, Two-

Tailed, and Flag significant correlations. Click on the

Options pushbutton, and click the option to obtain means

and SDs for all variables. Also, select Exclude cases pair-

wise as the Missing Values option. Then click Continue

and OK, and answer the following questions: (a) What is

the range of Ns for the four variables in this analysis?

(b) What is the highest correlation coefficient in the

matrix? Is it statistically significant—and, if so, at what

level? (c) What is the weakest correlation coefficient in the

matrix? Is it statistically significant—and, if so, at what

level? (d) What percent of variance does age at first birth

share with highest grade completed? What percent of vari-

ance does weekly hours worked share with household in-

come? (e) Do you think it would be appropriate to present

such a correlation matrix in a report? Why or why not?

B2. In this exercise, run the exact same analysis as in Exercise

B1, except select the option Exclude cases listwise as the

Missing Values option. Then answer the following ques-

tions: (a) How many cases were in this analysis? Why do

you think so few women were included in this analysis—

for example, why wasn’t the N � 425, which corresponds

to the number of women who had a nonmissing value for

workweek? (b) Comment on some of the differences in the

descriptive statistics for this subsample of women and the

more complete sample for Exercise B1. (c) How many cor-

relations were significant in this exercise? Was the number

of significant correlations smaller or larger than in

Exercise B1? Why do you think there is a difference?

(d) What is the strongest correlation in this matrix? How

much variance is shared between the two variables in

question?

B3. Examine the scatterplot for the relationship between

workweek and income through the Graphs ➜ Legacy

Dialogs ➜ Scatter/Dot ➜ Simple commands. Insert the

variable workweek as the X axis variable and income as the

Y axis variable. Run the analysis and answer the following

questions: (a) Does the scatterplot reflect a relationship that

looks fairly linear? Does the plot corroborate the obtained r
of .300? (b) Does the range of either variable seem to be re-

stricted? (c) Are only women with extreme values on either

variable included in the analysis? (d) Do there appear to be

any outliers? (e) If any of the questions b through d are an-

swered “yes,” what do you think should be done?

B4. In this exercise you will be running correlations between a

variable measuring the women’s overall satisfaction with

their material well-being (satovrl) and a variable measuring

hunger and food insecurity (foodscor). Begin, however, by

examining how scores on the variables foodscor and satovrl
were distributed by running Descriptives ➜ Frequencies.

Then run the correlation analysis, using Analyze ➜ 
Correlate ➜ Bivariate. On the main dialog box, select all

three options for Coefficients: Pearson, Kendall’s tau, and

Spearman. Click OK and then answer these questions:

(a) What is the level of measurement of the food insecurity

variable? What is the range of scores? (b) What percentage

of women and their children were in the group “Food

Insecure with Hunger”? (c) What is the level of measurement

of the overall satisfaction variable? What is the range of

scores? (d) According to Pearson’s r, what is the correlation

between food insecurity and overall satisfaction? (e) What

are the correlation coefficients for Kendall’s tau and

Spearman’s rho between the two variables? (f) Which of the

three possible coefficients do you think is most appropriate?

†

†

†

†

†

†

†

†

†
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Answers to Exercises

A1. a. no; b. no; c. yes; d. yes; e. no

A2. a. .578; b. .109; c. .828; d. .020

A3. a. .81; b. .36; c. .54; d. .26

A4. a. r likely would get smaller;

b. r likely would get larger;

c. r likely would get larger

A5. a � 9.8; Y� � 9.8 � .10X

A6. a. 4.6; b. 3.0; c. 7.5; d. 8.8

A7. Power is about .40, risk of Type II error, about .60

A8. About 200 participants
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B5. Run a simple regression between family income (income),

which we will use as the Y or dependent variable, and

number of hours worked (workweek), which we will use as

the X or predictor variable. You can do this through

Analyze ➜ Regression ➜ Linear. Move income into the

slot for Dependent Variable and workweek into the slot for

Independent Variable. Click the Statistics pushbutton and

make sure the following options are selected: Estimates,

Confidence Intervals, and Model fit; then click Continue.

(We do not have to run Descriptives because we already

did this earlier in Exercise B1.) Then click OK on the main

dialog box and use the output to answer the following

questions: (a) What is the value of r2 and adjusted r2?

(b) What is the SE estimate? (c) What is the regression sum

of squares and the total sum of squares in this analysis?

What is the value of SSRegression divided by SSTotal? (d) What

is the intercept constant and the slope in this regression?

Correlation and Simple Regression

(e) What is the regression equation for predicting new val-

ues of family income? (f) Using the regression equation,

what is the predicted monthly family income for women

working 35 hours per week?

B6. Run Correlations for the following variables in the

Polit2SetB dataset (note that this is a different file than for the

previous exercises): the woman’s age (age); number of chil-

dren living in the household (kidshh); number of ER visits in

the past 12 months (ervisit); number of doctor visits in the

past 12 months (docvisit); body mass index (bmi); number of

miscarriages (miscarr); score on the SF-12 physical health

component (sf12phys); and score on the SF-12 mental health

component (sf12ment). Use the output to create a table to

present the correlations between the two SF-12 scores on the

one hand and the other variables on the other. Use Table 4 as

a model, using the SF-12 variables as column headings. Then

write a paragraph summarizing the results.

†

†
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GLOSSARY
Attenuation The reduction in a correlation coefficient attributable to measurement error.

Coefficient of determination An index indicating the proportion of variance in the dependent variable accounted for or explained

by independent variables, more commonly referred to as r2 or R2.

Construct validity The degree to which an instrument truly measures the construct under consideration.

Criterion-related validity The extent to which scores on an instrument are correlated with an external criterion.

Errors of prediction The differences between the actual values of a dependent variable and the predicted values in a regression

analysis; the portion of the dependent variable not explained by the predictor variables; also called the residuals.

Intercept The point at which a regression line intercepts (crosses) the Y axis when the value on the X axis is zero; also called the

constant and often symbolized as a.

Interrater reliability A coefficient indicating agreement between raters, i.e., the extent to which the ratings of two independent

raters or observers are intercorrelated.
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Kendall’s tau A correlation coefficient used to indicate the magnitude of a relationship between variables measured on an ordinal

scale.

Linear model The general equation describing a straight line (that is, Y = a + bX).

Regression coefficient The weight associated with an independent variable when predicting values of the dependent variable in

regression analysis; also called a b weight.

Regression equation The equation for the best fitting straight line to characterize the relationship between independent and de-

pendent variables.

Regression A statistical procedure for predicting values of a dependent variable based on the values of one or more independent

variable.

Reliability The degree of consistency or dependability with which an instrument measures the attribute it is designed to measure.

Residuals In multiple regression and other analyses, the error term or unexplained variance.

Slope The rate at which a line rises across a horizontal distance; the steepness of a regression line, usually symbolized by b in a re-

gression equation.

Spearman’s rank-order correlation A correlation coefficient indicating the magnitude and direction of a relationship between

variables measured on the ordinal scale.

Standard error of estimate In regression analysis, the standard deviation of the errors from the regression line; used to indicate

the accuracy of the predictions from regression.

Test-retest reliability Assessment of the stability of an instrument by correlating the scores obtained on two separate administra-

tions.

Validity A quality criterion referring to the degree to which inferences made in a study are accurate and trustworthy; in a measure-

ment context, the degree to which an instrument measures what it is intended to measure.

r-to-z transformation A logarithmic transformation of correlation coefficients to z scores that allows the use of the normal distri-

bution for comparing correlation coefficients.

Bivariate normal distribution A distribution of two variables (X and Y) such that scores on X are normally distributed for each

value of Y, and vice versa.

Least-squares criterion The criterion used to estimate parameters in a model, such that the sum of the squared error terms is min-

imized; also called ordinary least-squares (OLS).

r The symbol used to designate a bivariate correlation coefficient, summarizing the magnitude and direction of a relationship be-

tween two variables.

Homogeneity The degree to which objects are similar (i.e., characterized by low variability).

Homoscedasticity A property describing the variability of two variables (X and Y) such that for each value of X the variability of

the Y scores is about the same and vice versa; the opposite of heteroscedasticity.

Ordinary least-squares (OLS) regression Regression analysis that uses the least-squares criterion for estimating the parameters

in the regression equation.

Point biserial correlation coefficient An index of the magnitude and direction of the relationship between two variables, one of

which is continuous and the other of which is dichotomous.

Predictor variable In correlational and regression analyses, the independent variable, used to predict the value of the dependent

variable.

Reliability coefficient A quantitative index, usually ranging in value from .00 to 1.00, that provides an estimate of how reliable or

consistent an instrument is.

Correlation and Simple Regression
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Introduction to Multivariate Statistics
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This chapter focuses on multiple regression, a useful and versatile statistical procedure. First, however, we

briefly discuss the general topic of multivariate statistics.

INTRODUCTION TO MULTIVARIATE STATISTICS

The bivariate inferential statistics we have examined thus far concern the relationship between two variables,

typically one independent variable and one dependent variable. Researchers have become aware of the limited

ability of bivariate statistics to unravel the complex phenomena in which they are interested. Phenomena such as

infection, pain, coping, and blood pressure have multiple determinants. Two-variable analyses cannot adequately

capture the multiple influences on, or causes of, these phenomena. Thus, the use of multivariate statistics, which

involve analyses of three or more variables, is expanding. The widespread availability of computers has made it

possible for even novice researchers to use complex statistical procedures.

From Chapter 10 of Statistics and Data Analysis for Nursing Research, Second Edition. Denise F. Polit. Copyright © 2010

by Pearson Education, Inc. All rights reserved.
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This chapter describes widely used multivariate statistics. In this chapter, for-

mulas and actual calculations for multivariate procedures are minimized.

Multivariate statistics are computationally formidable and are never done by hand,

so no attempt is made to present fully worked-out examples. At the same time, this

chapter offers more guidance on reading computer printouts.

BASIC CONCEPTS FOR MULTIPLE REGRESSION

When a researcher discovers that the correlation between two variables is, say, .50, it

means that 25% (.502) of the variance in the dependent variable is explained by the

independent variable. Yet, a full 75% of the variance is unexplained. Scientists strive

to fully understand—and predict—the phenomena in which they are interested, and

so they value statistical techniques that can mirror human complexity.

Multiple regression analysis, an extension of simple linear regression, allows

researchers to improve their predictions by using two or more variables to predict a

dependent variable. For example, suppose we wanted to predict a person’s weight. If

we did a regression using a person’s sex as the sole predictor variable, the accuracy

of our predictions would be modest. We would predict that men would be heavier than

women, but we would sometimes be wrong. Moreover, the regression equation would

predict men to have the mean weight for males and women to have the mean weight

for females, despite the fact that men’s and women’s weights can range over hundreds

of pounds. If, however, we could use information on a person’s height and sex, our

ability to predict weight would be dramatically improved. Multiple regression yields

an equation that provides the best prediction possible, given the correlations among

all variables in the analysis.

The Basic Multiple Regression Equation

The multiple regression equation is, conceptually, a simple extension of the simple

regression equation. The basic equation is as follows:

where Y� � predicted value for variable Y
a � intercept constant

k � number of independent (predictor) variables

b1 to bk � regression coefficients for the k predictor variables

X1 to Xk � values for the k predictor variables

This equation, or model, stipulates that the predicted value of Y is a linear

combination of an intercept constant, plus predictor variables that are weighted by

regression coefficients. Regression analysis yields best-fitting values of a and the bs,

using the least squares criterion that the squared error terms (the differences between

Y and Y�) are minimized.

In multiple regression equations, regression coefficients (b-weights) are asso-

ciated with each predictor variable. The coefficients are the weights associated with

a given independent variable when the other predictors are in the equation. If predic-

tor variables were added to or removed from the regression equation, the bs would

change.

As an example, suppose a graduate nursing program wanted to ensure the selec-

tion of the most worthy applicants. The school uses information from current graduate

students to develop a regression equation to predict academic performance of prospec-

tive students. Table 1 shows data for 20 students for the dependent variable, graduate

Y¿ � a � b1X1 � b2X2 � p � bkXk
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TABLE 1 Fictitious Data for Multiple Regression Analysis Predicting
Graduate GPA

Independent (Predictor) Variables
Dependent

Variable

Student
Undergrad GPA

X1

GRE-Verbal
X2

GRE-Quant
X3

Motivation
X4

Graduate GPA
Y

1 3.4 600 540 75 3.6

2 3.1 510 480 70 3.0

3 3.7 650 710 85 3.9

4 3.2 530 450 60 2.8

5 3.5 610 500 90 3.7

6 2.9 540 620 60 2.6

7 3.3 530 510 75 3.4

8 2.9 540 600 55 2.7

9 3.4 550 580 75 3.3

10 3.2 700 630 65 3.5

11 3.7 630 700 80 3.6

12 3.0 480 490 75 2.8

13 3.1 530 520 60 3.0

14 3.7 580 610 65 3.5

15 3.9 710 660 80 3.8

16 3.5 500 480 75 3.2

17 3.1 490 510 60 2.4

18 2.9 560 540 55 2.7

19 3.2 550 590 65 3.1

20 3.6 600 550 60 3.6

Mean 3.32 569.50 563.50 69.25 3.21

SD .30 65.09 74.92 10.17 .44

grade point average (GPA) and four independent variables—undergraduate GPA

(X1); scores on the standardized test called the Graduate Record Exam (GRE) Verbal

Test (X2); scores on the GRE Quantitative Test (X3); and scores on an achievement

motivation scale (X4). Although we do not show actual computations, the regression

equation using these data is as follows:

Y� � �1.215 � .672X1 � .0031X2 � .00067X3 � .0117X4

This equation specifies that graduate grade point average can be predicted by

subtracting (because the value of the intercept constant is negative) 1.215 from the sum

of applicants’ raw scores on the four predictors, multiplied by their respective re-

gression coefficients. In this equation, the b-weight for GRE Quantitative is negative,

so this term would be subtracted rather than added.

To examine the equation’s accuracy, suppose we used this equation to “predict”

the graduate grade point average of the first student in Table 1:

Y� � �1.215 � .672(3.4) � .0031(600) � .00067(540) � .0117(75)

Y� � 3.446
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For this first student we “predict” a graduate grade point average of 3.446, but

the actual value is 3.6. The error of prediction (Y� � Y) is �.154 (3.446 � 3.6), and

the squared error term is .024 (�.1542). In the aggregate, the sum of the squared

error terms is minimized in the analysis. Any values for the regression coefficients

and intercept constant other than those in the regression equation would yield a larger

sum of squared residuals.

The Standardized Multiple Regression Equation

In multiple regression, the independent variables are typically in different measurement

units. In our example, GRE scores are on a scale that can range from 200 to 800, while

undergraduate GPA can range from 0.0 to 4.0. Regression coefficients necessarily

incorporate differences in the measurement units, and so b-weights cannot directly

be compared.

To address this issue, the regression equation is often presented in the follow-

ing standardized form:

where zY� � predicted value of the standard score for Y
b1 to bk � standardized regression weights for k predictor variables

to � standard scores for k predictor variables

In standardized form, the raw values of the predictor variables are converted to

z scores, each of which has a mean of 0.0 and an SD of 1.0. The z scores are weighted

by standardized regression coefficients that are usually referred to as beta weights
(bs). In the standardized regression equation, there is no intercept constant because

the intercept is always 0.0. In our example, the standardized regression equation is as

follows:

This equation indicates that the predicted standard score (z score) for graduate

GPA equals the sum of the standard scores for the four predictors multiplied by their

respective beta weights. Note that, as in the original regression equation, the regres-

sion coefficient for GRE Quantitative is negative and so the third term is subtracted

from, rather than added to, the others.

TIP: Beta weights in regression analysis should not be confused with �,
the risk of a Type II error, as in a power analysis.

Multiple Correlation

Multiple regression analysis allows researchers to address several important questions

about the relationships among variables. One key question is how well the independent

variables, taken together, predict a dependent variable. In our example, this question is:

How well do undergraduate GPA, GRE Verbal and Quantitative scores, and motivation

scores predict graduate GPA?

This question is addressed through the multiple correlation of the dependent

and the predictor variables. Just as simple linear regression is closely linked to bivari-

ate correlation, so multiple regression is closely related to multiple correlation. The

multiple correlation coefficient, symbolized as R, summarizes the magnitude of the

zY ¿
� .46zx1

� .46zx2
� .11zx3

� .27zx4

zxk
z x1

ZY ¿
� b1zx1

� b2zx2
� p bkz x2
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TABLE 2 Correlation Matrix for Multiple Regression Example

Undergrad GPA
X1

GRE Verbal
X2

GRE Quant
X3

Motivation
X4

Graduate GPA
Y

Undergrad GPA X1 1.00

GRE Verbal X2 .62 1.00

GRE Quant X3 .44 .71 1.00

Motivation X4 .64 .37 .20 1.00

Graduate GPA Y .87 .76 .47 .71 1.00 

relationship between a dependent variable and several independent variables,

considered simultaneously.

Unlike Pearson’s r, R cannot be a negative value. R ranges from a low of .00 to

a high of 1.00, with higher values indicating a stronger relationship between several

independent variables and a dependent variable. R conveys no information about the

direction of relationship, which is sensible when you consider that some independent

variables could be negatively correlated with the dependent variable, while others

could be positively correlated.

R, when squared, indicates the proportion of variance in the dependent vari-

able accounted for by the predictors. R2 thus provides a direct means of evaluating

the accuracy of the multiple regression equation. When R2 is 1.0, perfect prediction

can be achieved. When R2 is, say, 0.10, prediction errors will be large.

Researchers can also use R2 to determine how much the accuracy of their pre-

dictions is improved by adding independent variables. In our example of predicting

graduate GPA, the multiple correlation coefficient is .94, and so the proportion of ex-

plained variance in graduate GPA is .88 (.942). Table 2 presents the full correlation

matrix for the four predictors and the dependent variable. This matrix shows that the

bivariate correlation (sometimes called the zero-order correlation) between under-

graduate GPA and graduate GPA is .87, so r2 � .76 (.872). Thus, the inclusion of

three additional predictors in the regression increased the proportion of variance

explained by .12 (i.e., from .76 to .88).

An important point is that R cannot be less than the highest bivariate correlation

between Y and the Xs. Table 2 shows that the independent variable that is correlated

most strongly with graduate GPA is X1 (undergraduate GPA), r � .87. Thus, R could

not have been less than .87.

A second point is that as predictors are added to the equation, R tends to in-

crease most when the predictors are not themselves highly correlated with each

other. If all the independent variables were perfectly correlated, the value of R would

be the same as the r between any X and Y—all rs would be identical, and additional

independent variables beyond the first one would contribute no new information. By

contrast, if two independent variables (X1 and X2) are totally uncorrelated (i.e., r12 � .00),

the rs between Y and the Xs could be added together to determine the value of R (i.e.,

R � ry1 � ry2). When the bivariate correlations among the independent variables are

between .00 and 1.00, as they usually are, the increment to R as variables are added

to the equation tends to be relatively small. Thus, R in our example is not substantially

higher than the r between Y and X1 alone (.94 versus .87). This is because there is

redundancy of information among correlated predictors. When the correlations

among the independent variables are high, each predictor adds little new information.
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When correlations among predictors are low, each variable can potentially explain a

unique portion of the variability in the dependent variable.

A third and related point is that increments to R tend to decrease as additional

predictors are included in the regression equation. Redundancy among predictors is

the rule, not the exception, and redundancy increases as the number of predictors

increases. In our example, Table 2 shows that the correlations among the independ-

ent variables are moderate to strong. We can see a decline in the increment to R as

predictors are added:

ry1 � .87

Ry12 � .91

Ry123 � .92

Ry1234 � .94

The coefficient increases from .87 for X1 and Y alone, to .91 (an increment of

.04) when X2 is added to X1 for predicting Y. The increment is smaller at subsequent

additions of predictors. Typically, the inclusion of independent variables beyond the

first three or four does little to improve the value of R.

Adjustments to R2

In bivariate correlation, coefficients from samples are expected to fluctuate above

and below the population value. In multiple correlation, however, the value of R can-

not be negative, so that all chance fluctuations are in a direction that inflates the mag-

nitude of R. Sampling fluctuation tends to be more severe in small samples, so over-

estimation of R is usually greatest in small samples. For this reason, R2 is often

adjusted to yield a better estimation of the population value, and sample size is taken

into account in the adjustment. In some textbooks, the result is called adjusted R2,

while others referred to it as shrunken R2.

The formula for the adjusted value (which we label R
~2) is straightforward:

In our example of predicting graduate GPA with all four independent vari-

ables, R2 was .88. Applying the adjustment formula, with N � 20 and k � 4, we

would calculate R
~2 to be .85 (calculations not shown). Most computer programs rou-

tinely calculate both R2 and R
~2.

Statistical Control: Partial and Semipartial Correlation

Regression coefficients in multiple regression must be interpreted somewhat differ-

ently than coefficients in bivariate regression. In simple regression, the value of b
indicates the amount of change in the predicted value of Y for a specified rate of

change in X. In multiple regression, the coefficients represent the number of units the

dependent variable is predicted to change for each unit change in a given predictor

when the effects of the other predictors are held constant. In the example we have

been using, the coefficient of .672 associated with undergraduate GPA in our equa-

tion means that, holding constant the two GRE scores and motivation scores, graduate

GPA is predicted to increase by .672 units for every change of 1.0 (1 unit) in under-

graduate GPA.

R
�2 � 1 � 11 � R2 2 c N � 1

N � k � 1
d
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Y
a

b

c
d

X2

X1

Zero-Order (Bivariate)
Correlation

r2
y1  =

a + b
a + b + c + d

Partial Correlation

r2
y1•2  =

a
a + d

Semipartial Correlation

r2
y(1•2)  =

a
a + b + c + d

FIGURE  1 Venn diagram illustrating partial and semipartial correlation.

The concept of “holding constant” other predictor variables is important and

relates to a key issue of research design and analysis: control. In a research context,

control means the control of variance in the dependent variable. Control can be

achieved in a number of ways (see Polit & Beck, 2008), but here we focus on statis-

tical control. Statistical control uses statistical methods to isolate or nullify variance

in a dependent variable that is associated with variables that are extraneous to the re-

lationship under study. For example, in a study of the association between teenagers’

self-esteem and their use of drugs, researchers would want to control potentially con-

founding factors that are known to be related to drug use (e.g., family income, aca-

demic performance). Multiple regression and other multivariate analyses provide a

mechanism for achieving such control. The process can best be explained through

visual representations of partial and semipartial correlation.

Partial correlation provides a measure of the relationship between a dependent

variable (Y ) and an independent variable (X1) while controlling for the effect of a

third variable (X2). Figure 1 presents a diagram that portrays relationships among

variables. As explained earlier, the circles represent total variability in the variables,

and the degree to which circles overlap indicates the magnitude of the correlation

between them—i.e., how much variance is shared. Figure 1 illustrates a situation in

which Y is correlated with both X1 and X2, which in turn are correlated with each

other. Y ’s variability has four components—variability uniquely shared with X1

(labeled a); variability uniquely shared with X2 (labeled c); variability common to all

three variables (labeled b); and variability that Y does not share with the other two

variables (d ). With partial correlation, the influence of X2 on Y (areas b and c) is

removed statistically. The partial correlation between X1 and Y (symbolized as ry1�2)

indicates the degree to which these two variables are correlated after the influence of

X2 is partialled out. Thus, the squared partial correlation reflects a as a proportion of

a � d, not as a proportion of the entire circle.
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In partial correlation, the effect of the extraneous variable is removed from the

independent and dependent variables. Semipartial correlation is the correlation be-

tween all of Y and X1, from which X2 has been partialled out. It is called semipartial

because the effect of the extraneous variable is removed from X1 but not from Y. In

the diagram, the area a corresponds to the squared semipartial correlation coefficient

between Y and X1 (symbolized as ry(1�2)); this squared semipartial coefficient repre-

sents a as a proportion of the entire circle. The area c corresponds to the squared

semipartial correlation coefficient between Y and X2 (ry(2�1)). These two squared

coefficients represent the unique areas of overlap between Y and each of the two

X variables.

Multiple correlation may be viewed as a combination of correlations and semi-

partial correlations. A formula for R2 that demonstrates this concept is as follows:

R2
y12 � r2

y1 � r2
y(2�1)

That is, the squared correlation between Y and the two X variables is equivalent to

the squared correlation between Y and X1, plus the squared semipartial correlation

between Y and X2 with X1 partialled. This equation can be extended indefinitely. The

term for a third predictor variable, for example, would be r 2
y(3�12)—the squared

semipartial correlation of Y with X3, with X1 and X2 partialled out. (In research re-

ports, the squared semipartial correlation coefficient is sometimes symbolized sr2.)

In regression analysis, the regression coefficients—the b weights—are some-

times referred to as partial regression coefficients. This signifies that the coefficients

are the weights associated with a given predictor when partialling out or controlling

for the effects of the other predictors in the equation.

TESTS OF SIGNIFICANCE FOR MULTIPLE REGRESSION

Thus far we have considered multiple regression in a descriptive sense: The regres-

sion equation and R are specific to the sample being used. However, researchers are

usually interested in generalizing results to a population, and tests of significance are

needed to facilitate the required inferences. There are several relevant tests of signif-

icance, each used to address a different research question. Assumptions that underlie

the statistical tests are discussed in a later section.

Test of the Overall Equation and R

The most basic statistical test in multiple regression is a test of the null hypothesis

that the population value of R is zero. This is equivalent to testing the null hypothe-

sis that all the regression coefficients in the multiple regression equation are zero.

The test for the significance of R is based on principles analogous to those

discussed for analysis of variance. Total variability in the dependent variable is par-

titioned into contributing components, and an F ratio is constructed. The computed F
statistic is then compared to tabled values for the F distribution.

In ANOVA, the F ratio is composed of two sums of squared deviations for the

dependent variable—the sum-of-squares between (the numerator) and the sum-of-

squares within (the denominator). For multiple regression, the general form of the 

F ratio is similar:

F �
SSregression>dfregression

SSresiduals>dfresiduals
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The underlying principle for the overall test in multiple regression is the same as in

ANOVA: Variability in the dependent variable that is attributable to the independent

variables (SSregression) is contrasted with variability attributable to other factors or

error (SSresiduals).

There are several formulas for computing the multiple regression F statistic,

but the most convenient is as follows:

where k � number of predictor (independent) variables

N � total number of cases (sample size)

We can use this formula to test the significance of the regression for predicting

graduate GPA, for which the value of R2 with four predictor variables is .88 (more

precisely, .883). Therefore, the value of the F-statistic would be as follows:

In regression, dfregression is equal to k, the number of predictors, and dfresiduals is

(N � k � 1), so in this example there are 4 and 15 degrees of freedom. In Table 3 of

Appendix: Theoretical Sampling Distribution Tables we find that the critical value of

F with 4 and 15 df for a� .05 is 3.06. Our calculated value of F is larger than the crit-

ical value, so we can reject the null hypothesis that the population value of R is zero.

Tests for Regression Coefficients

T statistics associated with each regression coefficient can be used to test the signifi-

cance of each independent variable. A significant t value indicates that the regression

coefficient is significantly different from zero. This means that the variable associated

with the regression coefficient contributes significantly to the regression, once the

other predictors are taken into account.

In our example of predicting graduate GPA, the t statistic associated with the re-

gression coefficient for undergraduate GPA (b � .672 for X1) is 3.36. (The calculations,

not shown here, involve dividing each b by its standard error; later we present computer

output for this analysis.) For individual regression coefficients, the appropriate degrees

of freedom is dfresidual, which in this case is 15. For df � 15 and a � .05, the critical

value of t (Table 2 of Appendix: Theoretical Sampling Distribution Tables) is 2.13.

Thus, the regression coefficient associated with undergraduate GPA is statistically sig-

nificant. Each coefficient in the equation would be evaluated in a similar fashion.

Tests for Added Predictors

Another question of interest is whether adding predictors significantly improves the

predictive power of the regression equation. That is, does adding Xk�1 to the regression

equation significantly increase R over that which was achieved with Xk predictors?

In the graduate GPA example, we might ask a question such as: Does adding

the two GRE scores and the motivation scores to the regression equation increase our

ability to predict graduate GPA over what we obtained using undergraduate GPA

alone? As noted earlier, the bivariate correlation between undergraduate and graduate

GPA (ry1) is .87, and thus ry1
2 � .76. The multiple correlation between Y and all four

predictors (Ry1234) is .94, so Ry1234
2 � .88. We can see that the inclusion of three

F �
.883>4
.117>15

�
.2208

.0078
� 28.31

F �
R2>k

11 � R2 2>1N � k � 1 2
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predictors improved R2 by .12—but is this increase statistically significant? In other

words, does the added predictive power reflect chance fluctuations for this sample

only, or is the increase likely to be true in the population?

An F statistic is computed to answer this question. Although we do not show

the actual computations, the calculated F statistic for testing whether the addition of the

three predictors results in a significant improvement in predicting graduate GPA over

predictions using undergraduate GPA alone is 4.50. Degrees of freedom for this F test

are 3 and 15. Consulting Table 3 of Appendix: Theoretical Sampling Distribution

Tables, we find that the critical value of F for a� .05 with 3 and 15 degrees of free-

dom is 3.29. Our calculated value of F is larger, so we can conclude that the addition

of X2, X3, and X4 as a set significantly improved the accuracy of predictions of Y over

what could be achieved using X1 alone.

STRATEGIES FOR ENTERING PREDICTORS
IN MULTIPLE REGRESSION

Several strategies can be used to enter independent variables in regression equations.

Differences among the alternative strategies involve what happens to overlapping

variability among correlated independent variables, and how the order of entry of

predictors into the equation is determined.

Venn diagrams help to illustrate how three strategies allocate overlapping vari-

ability differently. Figure 2 shows a schematic diagram of the relationship between

four variables—a dependent variable, Y, and three independent variables, X1, X2, and

X3. In this example, all three predictors are correlated with the dependent variable.

Based on the extent of overlap between the X and Y variables, we can see that Y is

most strongly correlated with X1, and least strongly correlated with X3. The diagram

also indicates that X2 is correlated with both X1 and X3. Yet, X1 and X3 do not overlap

at all—they are uncorrelated. What is at issue is how to allocate the variability that

the three predictor variables have in common with Y—the areas designated as m and o
in Figure 2.

(A)
Simultaneous Regression

(B)
Hierarchical Regression

(C)
Stepwise Regression

Y

X 1

X 2

X 3

ml

n

o
p

Y

X 1

X 2

X 3

l m
n

o
p

Attributed to X1

KEY:

Attributed to X2 Attributed to X3

Y

X 1

X 2

X 3

l m
n

o
p

FIGURE  2 Venn diagrams illustrating alternative regression strategies.
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Simultaneous Multiple Regression

The standard multiple regression strategy, simultaneous multiple regression, enters

all independent variables into the equation simultaneously. One regression equation is

developed, and the regression coefficients indicate the relationship between each pre-

dictor when all other predictors have been taken into account. The regression equation

presented earlier for predicting graduate GPA used simultaneous multiple regression.

Figure 2(A) illustrates this strategy. The shaded areas of the circles (labeled l,
n, and p) indicate the variability allocated to X1, X2, and X3, respectively, with this

procedure. As this figure shows, each independent variable is assigned only the por-

tion of Y’s variability that it contributes uniquely—the portions we described as cor-

responding to the squared semipartial correlations. The areas of overlap—areas m
and o—contribute to the prediction of Y and to the magnitude of R, but these areas

are not attributed to any particular independent variable.

Thus, in standard multiple regression, all independent variables are dealt with

on an equal footing. This strategy is most appropriate when there is no theoretical

basis for considering any particular independent variable as causally prior to another,

and when all independent variables are of equal importance to the research problem.

Example of simultaneous regression:

Groth (2008) studied the long-term impact of adolescent gestational weight gain on

the mothers’ weight, as measured by the body mass index (BMI). She used simulta-

neous regression to regress the mothers’ changes in BMI 6 and 9 years after giving

birth on four predictors: gestational weight gain, age, prepregnant BMI, and number

of additional children.

Hierarchical Multiple Regression

In hierarchical multiple regression, independent variables are entered into the

model in a series of steps, with the order of entry controlled by the researcher.

Hierarchical regression allows researchers to observe what an independent variable

(or block of independent variables) adds to the equation at the point that it is entered.

The order of entering predictors should be based on logical or theoretical consid-

erations. For example, some independent variables may be conceptualized as being

causally or temporally prior to other independent variables, and these could be entered

early in the analysis. Suppose, for instance, that we wanted to predict breast self-

examination practices on the basis of women’s health beliefs and age. It could be

argued that age should be entered into the equation first, because age (or, to think of it

another way, year of birth) is temporally and perhaps even causally prior to health beliefs.

Another reason for using hierarchical regression is to examine the effect of key

independent variables after the effect of other variables has been controlled. For

example, suppose our main research interest was in examining the relationship be-

tween a woman’s alcohol consumption during pregnancy and infant birthweight.

Hierarchical regression could be used to first control (remove the effect of)

confounding variables that also influence infant birthweight (e.g., length of gesta-

tion, maternal age, and so on). With these variables entered in an early step, it would

be possible to determine what alcohol consumption adds to the regression.

Figure 2(B) illustrates hierarchical or sequential regression. In this example,

the researcher has entered X1, X2, and X3 in three successive steps. The process of

variable entry is shown in Figure 3. Panel A shows that in the first step, all of the
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(A) First Entry: X1 (B) Second Entry: X2 (C) Third Entry: X3

Y

X 3

Y X 2n+o

KEY: Attributed to X1 Attributed to X2 Attributed to X3

Y

X 1

l + m

p

FIGURE  3 Illustration of hierarchical regression.

variability that is shared between X1 and the dependent variable is attributed to X1,

and this variability is removed from further consideration. Thus, referring back to

Figure 2, the overlapping area between X1 and X2 (the area labeled m) is assigned to

X1. In the next step of the analysis (panel B of Figure 3), only a portion of Y’s vari-

ability remains to be explained: Variability associated with X1 has been “controlled”

or held constant. When X2 is entered into the equation, the variability that remains

between Y and X2 is assigned to X2, and this is the area labeled o in Figure 2. In the

third phase, only variability that is unique to X3 is attributed to this predictor because

all overlapping variability has already been taken into account.

In hierarchical regression, the researcher determines the number of steps and

the variables included at each step. When several variables are added as a block, the

analysis is a simultaneous regression for those variables at that stage. Thus, hierar-

chical regression can be viewed as an ordered series of simultaneous regressions.

Example of hierarchical regression:

Bekhet, Zauszniewski, and Wykle (2008) used hierarchical multiple regression in

their study of relocation adjustment among elders who relocated to retirement com-

munities. With relocation adjustment as their dependent variable, they examined the

effect of relocation controllability—the degree of external pressure to move—after

first controlling background characteristics (e.g., age, marital status, education) and

relocation factors (e.g., type of facility, time since relocation).

Stepwise Multiple Regression

A third strategy, stepwise multiple regression, is controversial because variables

are entered into the regression equation based on statistical rather than theoretical

criteria. Basic stepwise regression involves successive steps in which predictors are

entered, one at a time, in the order in which the increment to R is greatest. The com-

puter, rather than the researcher, determines the order of entry of predictors.

The first independent variable entered in stepwise regression is the variable that

has the highest bivariate correlation with the dependent variable. In Figure 2, X1 has

the highest correlation, and so X1 is the first variable included in the equation. As
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shown in panel C of this figure, all of the shared variability between X1 and Y (areas l
and m) is attributed to this first predictor, as was true in hierarchical regression.

The predictor variable selected to enter in the second step is not necessarily the

one with the second highest correlation with Y. The selected variable is the inde-

pendent variable that accounts for the largest portion of what remains of Y ’s variabil-

ity after the first variable entered has been taken into account. In our example, X2 is

more strongly correlated with Y than is X3. Yet, much of the predictive power of X2

has already been accounted for by X1 because these two predictors are correlated. By

contrast, X3 is not correlated with X1, and thus X3 can account for a greater propor-

tion of what remains of Y’s variability—and thus contribute more to R. Thus, X3 is

entered in step 2 of the stepwise regression. Panel C of Figure 2 shows that all of the

variability shared between X3 and Y is attributed to X3, including the area labeled o that

represents overlap between X2 and X3. In the third step, X2 is finally entered, but X2

accounts for only a small portion of Y’s variability (area n).

Stepwise regression is most often used when there are more than three variables.

At each step, the predictor entered into the equation is the one that accounts for the

greatest proportion of variability in Y after removing the effect of previous variables.

The analysis proceeds so long as there are predictors that contribute significantly to

R. When no more independent variables result in a significant increment to R, the

analysis stops.

Stepwise regression offers several options for evaluating predictors. The one just

described is called forward selection. The equation starts from scratch and is built

forward, a step at a time, with the addition of variables that meet statistical criteria.

A second option is backward deletion, which starts out with all independent variables

in the equation, as in simultaneous regression. Then, in successive steps, variables that

fail to contribute to the regression are deleted. A third alternative is a true stepwise
solution, which proceeds in a similar fashion to forward selection, except that vari-

ables already in the equation are re-evaluated and dropped in later steps if they fail to

contribute significantly to the regression once later-added variables are in the equation.

Stepwise regression is controversial because there is no underlying theoretical

rationale to the entry or inclusion of variables in the equation. The selection of the

next variable to be entered may be based on relatively minor differences between re-

maining variables, and differences could reflect sampling error. The regression equation

from any single sample may not be the best reflection of population values. Stepwise

regression is perhaps best suited to exploratory work. Even then, caution is needed

when using stepwise regression, and replication with a second sample is strongly

advised. If a single sample is sufficiently large, cross-validation can be accom-

plished by dividing the sample in half (preferably at random) to determine if a similar

regression equation results from both subsets of data.

Example of stepwise regression:

Eastwood, Doering, Roper, and Hays (2008) used stepwise multiple regression to

explore factors that affected health-related quality of life one year after coronary

angiography. They found that baseline health-related quality of life, degree of

illness-related uncertainty, and life stress were strong predictors of postangiography

health-related quality of life, even after controlling for angiographic outcome.

NATURE OF THE INDEPENDENT VARIABLES

Multiple regression is used to predict a dependent variable that is measured on an in-

terval or ratio-level scale. There is, however, flexibility with regard to the independent
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variables. This section reviews major options for properties of independent variables

used in regression analysis.

Interval and Ratio-Level Independent Variables

Independent variables used in multiple regression are often variables measured on an

interval or ratio scale, or on a scale that approximates interval characteristics. In our

example of predicting graduate GPA, the four predictors were measured on scales that

are reasonably close approximations to interval-level measurement. The use of variables

measured on interval and ratio scales is straightforward. The values typically do not have

to be transformed or manipulated—the raw data values are used directly in the analysis.

TIP: Ordinal-level variables can also be used in regression analyses, if
there are a sufficiently large number of categories and the distribution is
reasonably close to being normal, as long as the ordinal variable has a
linear relationship with other variables. If an ordinal-level variable has
only a few categories (e.g., assistant professor, associate professor, and full
professor), it should be treated like a nominal-level variable.

Nominal-Level Independent Variables

Nominal-level variables can also be included in regression analysis, but care must be

taken regarding how they are represented. Nominal-level variables must be coded in

a manner that allows for appropriate interpretation of the regression coefficients. Let

us take as an example the variable race/ethnicity. Suppose that we originally as-

signed four codes to this variable: 1 � White, 2 � African American, 3 � Hispanic,

and 4 � Asian. The raw data for this variable could not meaningfully be used in re-

gression analysis because the analysis assumes that 4 means “more of ” the variable

than 3, and so on. The original codes have no inherent quantitative meaning, so re-

gression coefficients for this variable could not be sensibly interpreted. Nominal-

level variables typically have to be recoded for regression analysis.

Several alternative systems can be used to code nominal variables. Whichever

option is chosen, the value of R remains the same, but the values of the regression co-

efficients and intercept constant are affected. The coding options share one feature in

common: they involve creating c � 1 newly coded variables to represent the original

variable, where c is the number of original categories. Thus, for sex (male/female),

there would be one newly coded variable (2 � 1 � 1), but for our four-category

race/ethnicity variable, there need to be three new variables (4 � 1 � 3).

DUMMY CODING The most widely used coding scheme for regression analysis is

dummy coding, which involves creating a series of dichotomous variables that con-

trast members in one category with everyone else. The code of 1 designates member-

ship in the specified category, and 0 designates nonmembership. For example, if we

were coding sex, the code of 1 could be assigned to all females, and the code of 0

could be assigned to all males, or vice versa.

When there are more than two categories, there needs to be c � 1 variables, all

of which are coded either 1 or 0. Table 3 shows how race/ethnicity would be dummy

coded. The original four-category codes are shown in the second column. In the next

three columns are three new variables, which are descriptively named as they might

be for a computer analysis: white, afroamer, and hispanic. Any participant whose

code on the original variable was 1 would be coded 1 for white, and any participant

whose original code was 2, 3, or 4 (i.e., those who were non-White) would be
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TABLE 3 Dummy Coding of Race/Ethnicity Variable

Race/Ethnicity
Original 

Code
white

X1

afroamer
X2

hispanic
X3

White 1 1 0 0

African American 2 0 1 0

Hispanic 3 0 0 1

Asian 4 0 0 0

TABLE 4 Effect Coding of Race/Ethnicity Variable

Race/Ethnicity
Original 

Code
white

X1

afroamer
X2

hispanic
X3

White 1 1 0 0

African American 2 0 1 0

Hispanic 3 0 0 1

Asian 4 �1 �1 �1

coded 0. In effect, the new variable represents “whiteness” and the codes indicate yes

or no for each person’s status on this variable. For the variable afroamer, only people

with an original code of 2 would be coded 1 and all others would be coded 0, while

for hispanic, those originally coded 3 would be coded 1 and all others would be 0.

There need to be c � 1 new variables, and so the one category that is omitted

serves as a reference group. In this case, the reference group is Asian. Asian partic-

ipants in the sample, who were coded 4 on the original race/ethnicity variable, would

be coded 0 on white, afroamer, and hispanic. A fourth variable is not necessary because

the information would be redundant: An Asian person is non-White, non–African

American, and non-Hispanic, and can be designated by having all 0s for these three

variables. It does not matter which group is omitted, but the reference group is often

the one that has the smallest membership.

The new variables can then be used as predictors in a multiple regression

analysis. Suppose we wanted to predict infant birthweight based on mothers’ race/

ethnicity. The multiple regression equation would be as follows:

birthwt � a � b1white � b2afroamer � b3hispanic

In this analysis, the intercept term is the mean on the dependent variable

(birthwt) for the reference group; for this group (Asians) all the dummy variables are

equal to zero, and therefore all other expressions after a in the equation would also

equal zero. The regression coefficient on each dummy variable is the estimate of the

difference in the dependent variable between the designated group and the reference

group. Thus, the coefficient for white estimates the difference in infant birthweight

between White mothers and Asian mothers. The t test associated with the coefficient

for a particular dummy-coded predictor tests whether that group differs significantly

from the reference group.

EFFECT CODING Effect coding is similar to dummy coding, except that the refer-

ence group is assigned �1 rather than 0 for each newly-created variable. Thus, if effect

coding were used for the race/ethnicity variable, people who were originally coded

4 (Asian) would be assigned �1 on the white, afroamer, and hispanic variables. All

others would be coded with 1s and 0s as for dummy coding, as shown in Table 4.
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TABLE 5 Orthogonal Coding of Race/Ethnicity Variable

Race/Ethnicity
Original 

Code
Contrast 1

X1

Contrast 2 
X2

Contrast 3 
X3

White 1 1⁄2 1 0

African American 2 1⁄2 �1 0

Hispanic 3 �1⁄2 0 1

Asian 4 �1⁄2 0 �1

With effect coding, the a in the equation is the grand mean—the mean of the

entire sample—on the dependent variable rather than the mean of the reference

group. The regression coefficient associated with each predictor now indicates the

group’s mean on the dependent variable relative to the grand mean, and the t test as-

sociated with each coefficient tests the significance of the group’s difference from

the grand mean.

Using effect coding in our example, we could compare the mean birthweights

for White, African-American, and Hispanic mothers against the overall grand mean.

To find the mean for Asian mothers, we would have to perform a calculation. All

bs—including that for the omitted group—must total zero, since the b-weights re-

flect deviations from the mean. Thus, if the regression coefficients for White,

African-American, and Hispanic mothers were �4, �3, and �1, respectively, the

coefficient for the Asian group would be �2 (i.e., 4 � 3 � 1 � 2 � 0).

ORTHOGONAL CODING If dummy or effect coding is used, the researcher cannot

draw conclusions about differences between all pairs of group means. In our above ex-

ample, the regression analysis would not enable us to conclude that the birthweights of

African-American and White babies differed significantly. When researchers have spe-

cific hypotheses about group differences, they sometimes use orthogonal coding to test

these differences. Orthogonal coding provides a means of performing planned (a priori)

comparisons that yield a more powerful statistical test than post hoc comparisons.

TIP: The term orthogonal refers to a perfect nonrelationship between
variables. If variable X and variable Y are orthogonal (r � .00), knowledge
of the value of X tells us nothing about the value of Y. Orthogonal coding
sets up group contrasts that are independent.

In our example of four racial/ethnic groups, suppose that 40% of the popu-

lation was White, 40% was African American, 10% was Hispanic, and 10% was

Asian. We might, therefore, want to contrast the two “majority” groups (Whites

and African Americans) with the two “minority” groups (Hispanics and Asians).

We can do this by assigning codes of 1⁄2 and 1⁄2 (that is, .5 and .5) to participants in

these categories, as we show for the first contrast in Table 5. This contrast com-

pares the combined mean for Whites and African Americans with the combined

mean for Hispanics and Asians. Next, suppose that we wanted to test the hypoth-

esis that Whites and African Americans were different. This contrast is represent-

ed with a code of 1 for Whites and a code of �1 for African Americans; the other

two groups that are not being compared are coded 0 (contrast 2 in the table). Our

final hypothesis (contrast 3 in the table) concerns differences between Hispanics

and Asians.
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TABLE 6 Coding of Interactions for Two Dummy Variables

Cell
group

X1

sex
X2

interact
X3

Intervention Group, Female 1 1 1
Intervention Group, Male 1 0 0

Control Group, Female 0 1 0

Control Group, Male 0 0 0

There are three requirements for orthogonal codes. First, there must be c � 1

contrasts. Second, the codes established within a contrast must add up to 0. In Table

5, the sum of codes for contrast 1 is zero (1⁄2 � 1⁄2 � 1⁄2 � 1⁄2 � 0), as is the sum of codes

for contrast 2 (1 � 1 � 0 � 0 � 0) and contrast 3 (0 � 0 � 1 � 1 � 0). Finally, the

sum of cross products must also equal zero. For example, the summed cross products

for the first two contrasts are [(1⁄2)(1) � (1⁄2)(1) � (1⁄2)(0) � (1⁄2)(0) � 0]. The summed

cross products for contrasts 1 with 3 and contrasts 2 with 3 must also equal zero, as

they do in this example.

When orthogonal coding is used, a is the grand mean of the dependent variable.

Each regression coefficient (b) represents one of the hypothesized contrasts.

Interaction Terms

In addition to predictors that are continuous variables and coded nominal-level vari-

ables, interactions between variables can be represented in the multiple regression

equation. As you know, an interaction refers to the combined effect of two variables—

e.g., the effect of a specific “cell” when two independent variables are crossed, as in a

factorial design. In multiple regression, interaction terms can be constructed between

nominal-level and continuous variables and used as variables in the equation.

It is beyond the scope of this text to explain interaction within multiple

regression in detail and to fully discuss how interaction terms should be inter-

preted. However, we briefly illustrate the use of interaction terms with a simple

example that involves two nominal-level variables that have been dummy coded.

Suppose we designed a randomized controlled trial to test the effectiveness of an

intervention to alleviate pain for male versus female cancer patients, using a

randomized block design. As shown in Table 6, the first independent variable (X1)

is group; those in the intervention group are coded 1, and controls are coded 0 on

this variable. For sex (X2), females are coded 1 and males are coded 0. The inter-

action term for the interaction between group and sex (X3) is constructed by mul-

tiplying the two codes for X1 and X2 together, as shown in the right-hand column

of Table 6. In this example, females in the experimental group are coded 1 on the

X3 variable (interact) as a result of the multiplication of codes, while all others

are coded 0. Conceptually, it makes sense to multiply: The interaction term repre-

sents the joint effect of two variables over and above any additive combination of

their separate effects. The regression coefficient for the interaction term (b3)

equals the difference between the regression coefficient of X1 for males and fe-

males in the two groups. If the regression coefficient for the interaction is signifi-

cant, we can conclude that the regression of the pain measure on experimental

group status is conditional—that is, it depends on whether the patients are male

or female.
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A Note on the Link Between Regression and ANOVA

Since categorical variables and interaction terms can be represented as independent

variables in multiple regression, you may wonder if there is a connection between

multiple regression and ANOVA. In fact, ANOVA and multiple regression are vir-

tually identical. Both ANOVA and regression require a continuous dependent vari-

able, and both involve partitioning variance into a component associated with the

independent variables and a component for unexplained or error variance. Both

techniques involve the computation of an F ratio to test for significant effects. And

both provide information about the total amount of variation explained by the

independent variable: through R2 for multiple regression and through eta2 for

ANOVA.

By convention, researchers whose research design is experimental (i.e., those

who manipulate and control the independent variable) usually use ANOVA, while

those whose research is nonexperimental are more likely to use regression. Yet, any

data for which ANOVA is appropriate could, through the use of coded nominal vari-

ables and interaction terms, be analyzed through multiple regression. When one or

more independent variable is continuous, however, ANOVA cannot be used; the data

must be analyzed by multiple regression.

SPECIAL ISSUES IN MULTIPLE REGRESSION

Multiple regression analysis is a complex procedure to which entire textbooks have

been devoted. Although this text provides primarily an overview of the major features

of regression, a few additional topics merit brief discussion.

Precision and Multiple Regression

The main results of multiple regression analysis are most often communicated as the

value of R2, along with information about whether R2 is statistically different from

zero. Yet, this information is not necessarily very informative: With multiple predic-

tors, it is unusual to find an R2 that is not significantly different from .00. Moreover,

R2 could be highly significant, yet very imprecise, especially if the sample size is

small. Even when sample size adjustments are made to R2, readers cannot grasp how

reliable the estimate of the population R2 is without confidence intervals.

As an example, suppose we did a regression analysis using five predictor vari-

ables for a sample of 50 people. Assume we obtained an R2 of .40 (adjusted R2 � .33),

which is significant at p � .001—and so, we can be confident that the population

multiple correlation between is not zero. Yet the 95% CI around the R2 of .40 ranges

from .22 to .58—a very substantial range of values despite the highly significant

value of the coefficient.

It is extremely rare, however, for researchers to report CIs around R2. This

likely reflects the fact that most major software programs do not calculate such CIs.

It is, however, possible to use Internet resources to calculate CIs, and we urge you to

do so. One Internet resource, which requires you to input the value of R2, the number

of predictors, sample size, and the desired confidence interval, is the following:

http://www.danielsoper.com/statcalc/calc28.aspx. It is simpler to state that “the R2 of

.40 was significant at the .001 level” than to state that “the confidence is 95% that the

population R2 lies between .22 and .58,” but the latter statement communicates very

meaningful information.
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TIP: Although SPSS and other major software do not currently calculate
CIs around the value of R2, they do provide options for calculating
confidence intervals around regression coefficients.

Sample Size and Power

One of the practical matters that needs to be considered in using multiple regression is

whether the sample size is sufficiently large to support the analysis. Inadequate sample

size can increases the risk of Type II errors. It also can yield unstable and meaningless

regression coefficients. There are two ways of approaching the sample size issue, as

discussed next.

RATIO OF PREDICTORS TO CASES If the number of participants for the regression

analysis is too small, the regression equation may yield a good solution for the sam-

ple data, yet be of little predictive value for a new sample. This is particularly likely

to occur if there are many independent variables, and if a stepwise solution to variable

selection has been used. Researchers usually collect data for numerous variables and,

because multiple regression can readily be performed on a computer, it is sometimes

tempting to put many independent variables into the analysis. Potential predictor

variables should be chosen with care, however, because having too many predictors

can reduce the utility of the regression equation and can raise the risk of Type I and

Type II errors.

Various experts have offered sample size guidelines concerning the appropriate

ratio of cases to predictors. Tabachnick and Fidell (2007) offer a simple guideline:

N ≥ 50 � 8k, where k is the number of predictors. So, if there were three

predictors, there should be at least 74 participants for the regression analysis. They

recommend, however, a ratio of 40 cases per predictor for stepwise regression. More

cases are required for stepwise regression because it tends to capitalize on idiosyn-

cracies of the specific data set. Also, by having a larger sample, cross-validation by

splitting the sample in two halves may be a viable option.

These general guidelines may result in too small a sample under certain condi-

tions. One of these conditions is a small effect size, an issue we discuss in the next

section. Other situations that require a larger case-to-predictor ratio include having a

dependent variable that is skewed rather than normally distributed and having vari-

ables with substantial measurement error.

POWER ANALYSIS A more precise and reliable way to determine sample size re-

quirements for multiple regression is to perform a power analysis. As we have seen,

power analysis takes effect size—the estimated magnitude of the relationship between

independent and dependent variables—into account in estimating the sample size

needed to limit the risk of a Type II error.

The number of subjects needed to reject the null hypothesis that R2 is zero is

a function of effect size, number of predictors, desired power, and the significance

criterion to be used. In multiple regression, the estimated effect size is often referred

to as f 2 and is a function of the value of R2. We do not show direct computations of

f 2 here. Instead, we present a table for which the calculations have already been

performed.

Table 7 presents the estimated sample size needed for a test of the basic multi-

ple regression null hypothesis that R2 � .00. This table shows sample size estimates

to achieve a power of .80 with a significance criterion of .05 for 2 to 10 predictor vari-

ables, and for various values of R2. (For other statistical criteria, more predictors, or
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TABLE 7 Sample Size Estimates for Test of Null Hypothesis That R2 � .00, for Selected Values of R2

and Various Number of Predictors, for Power � .80 and � � .05

Number of
Predictors

Estimated Population R 2

.02 .03 .04 .05 .06 .08 .10 .13 .15 .20 .25 .30 .40 .50

2 478 320 230 183 152 113 89 67 58 42 32 26 18 14

3 543 364 261 208 173 128 102 77 66 48 37 30 21 16

4 597 400 287 229 190 141 112 85 73 53 41 33 24 18

5 643 430 309 246 205 153 121 92 79 57 45 36 26 20

6 684 458 329 262 218 163 129 98 84 61 48 39 28 21

7 721 483 347 277 231 172 136 104 89 65 51 41 30 23

8 755 506 375 290 242 180 143 109 94 69 54 44 32 24

9 788 528 380 303 252 188 150 114 98 72 56 46 33 26

10 818 549 395 315 262 196 156 119 102 75 59 48 35 27

different values of R2, consult an online power calculator, such as this one: http://

www.danielsoper.com/statcalc/calc01.aspx.)

As an example, suppose we were planning a study to predict patients’ degree

of preoperative anxiety on the basis of five predictor variables and had reason to

believe—for example, based on pilot study evidence—that R2 would be approxi-

mately .10. Table 7 indicates that a sample of at least 121 patients would be needed

to detect a population R2 of .10 using five predictors, with a 20% risk of a Type II

error and a 5% risk of a Type I error.

In the absence of specific predictions about the size of R2, researchers can, as a

last resort, use Cohen’s (1988) conventions. These guidelines suggest that effect size

is small when R2 � .02, moderate when R2 � .13, and large when R2 � .30.

Note that power analysis can also be used to determine the sample size require-

ments to test null hypotheses about individual regression coefficients, which is often

a major research purpose. The procedures are described in Cohen, Cohen, West, and

Aiken (2003), and can be performed online in certain power calculators, or with

power software.

Relative Importance of Predictors

If the main purpose of a regression analysis is for prediction—as in our example of a

nursing school predicting graduate GPA for admissions purposes—the goal is to

achieve the most accurate prediction possible by maximizing R2. However, multiple

regression analysis is also used to help researchers better understand phenomena of

interest, and for this reason they often seek to determine which independent variables

in the regression are most important in explaining the dependent variable.

When predictor variables in a regression analysis are correlated—which is al-

most always the case—the assessment of the relative importance of the predictors is

difficult. There is no totally satisfactory way of untangling the effects of correlated in-

dependent variables. It should be clear that the solution is not to compare the b-weights

in the regression equation. Regression coefficients are in the original units of measure-

ment, and so their values cannot be compared. In the regression equation for predicting

graduate GPA, the b for undergraduate GPA was .672, while that for GRE Verbal scores

was .003. Undergraduate GPA is not 224 times more important than verbal GRE scores,

but the weight is 224 times larger because of differences in the units of measurement.
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Perhaps, then, the solution is to compare standardized regression coefficients,

which are all in the same unit of measurement. In the standardized regression equation

for predicting graduate GPA, the b weight for undergraduate GPA (.460) was under 1%

larger than that for verbal GRE scores (.457). Does that mean that undergraduate GPA

has only about 1% more explanatory power than verbal GRE scores? Unfortunately,

although some researchers compare beta weights in this fashion, it is not usually

judicious to do so. Beta weights tend to be unstable, fluctuating in value from sample to

sample. Moreover, beta weights change as variables are added to or subtracted from the

regression equation. For example, if we were to omit GRE Verbal scores (X2) from the

regression analysis, the standardized regression equation would be as follows:

zY � .63zx1 � .14zx3 � .28zx4

In this new equation, the beta weights for all three remaining variables are

higher than before. The biggest change is the beta weight for GRE Quantitative,

which was previously negative and is now positive. Because beta weights are not fixed

relative to other beta weights in the analysis, it is difficult to attach much theoretical

importance to them.

Another approach is to consider the proportion of Y’s variability that is explained

by different predictors, but this is problematic, too. In our graduate GPA example,

the most highly correlated predictor was undergraduate GPA, which accounts for .76

of Y’s variance (r2 � .872 � .76). When GRE Verbal is added to the equation, R2

increases to .83, a .07 increase. Should we conclude, then, that undergraduate

grades are about 11 times as important as GRE Verbal scores (.76 � .07 � 10.85) in

explaining graduate school grades? This would not be appropriate, because the

relative contribution of the two variables is determined by which one is entered into

the regression first. If GRE Verbal were the first variable used to predict graduate

GPA, the proportion of variance it would account for would be r2 � .762 � .58. If

undergraduate GPA were then added, the R2 for the two predictors would stay

the same at .83, so that the apparent contribution of undergraduate GPA is only .25

(.83 � .58 � .25); this is more than 200% less than the proportion for verbal GRE

scores, rather than 11 times greater. This situation results from the fact that overlap-

ping variability in the predictors (area b in Figure 1) is attributed to the first variable

in the equation.

One of the better solutions is to compare the squared semipartial correlations of

the predictors. This would mean comparing the area labeled a with that labeled c in

Figure 1. The semipartial correlations are useful because they indicate a predictor’s

unique contribution to Y, i.e., the contribution after the effect of other predictors is

taken into account. Semipartial correlations can be produced by major software pack-

ages. In the present example, the semipartial correlation of graduate GPA and under-

graduate GPA while partialling GRE Verbal scores is .50, while that of graduate GPA

and verbal GRE with undergraduate grades partialled is .29. Thus, when these two

independent variables are used to predict graduate grades, the unique contribution

of undergraduate grades is about 60% greater than that for GRE Verbal scores.

Example of evaluating relative importance:

Corless and colleagues (2008) studied factors that predicted fatigue in HIV/AIDS

patients, using hierarchical multiple regression. Their regression tables presented in-

formation about both the betas and the squared semipartial correlation coeffcieints

for each predictor.
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Suppression in Multiple Regression

There are instances in which a predictor variable has an effect on the regression

equation that appears inconsistent with that variable’s relationship with the dependent

variable. This can occur through a phenomenon called suppression.

For example, it is sometimes possible for an independent variable to contribute

significantly to R2 even though it is totally uncorrelated with the dependent variable.

This situation, which is sometimes called classical suppression, is illustrated in

Figure 4(A). Here, X1 is correlated with Y, but X2 is not. Yet, because of the correla-

tion between the two predictors, the inclusion of X2 in the regression equation in-

creases the variance accounted for in the dependent variable by suppressing some of

the variability in X1 that is irrelevant to Y.

An illustration may clarify how this works. Suppose we wanted to predict new

nurses’ clinical performance as rated by their supervisors (Y) on the basis of the nurses’

score on a nursing achievement test (X1). Test scores are influenced not only by actual

nursing knowledge, but also by test anxiety (X2). Test anxiety does not affect the

nurse’s day-to-day performance in clinical settings, and so these two variables are

uncorrelated. However, part of the reason that test scores and clinical performance

do not correlate more highly than they do is because the test scores of some nurses

are lowered by their anxiety—their real nursing knowledge is artificially masked.

By removing the portion of test score variability that reflects the influence of test

anxiety, the prediction of clinical performance based on test scores improves.

There are other types of suppression, one of which is illustrated in Figure 4(B). In

net suppression, there are correlations among all the variables. That is, r2
y1 	 .00,

r2
y2 	 .00, and r2

12 	 .00. However, the correlation between Y and X2 is relatively

small, and yet the contribution of X2 in the regression equation is not insubstantial.

This results from the fact that the contribution of X2 occurs mainly through suppressing

a portion of the variance of X1 that is uncorrelated with Y.

The presence of suppressors can be detected by comparing the bivariate correla-

tions of Y and each X with the corresponding beta weights for each X. If the regression

coefficients are significant, suppression is present when the bivariate correlation and

the beta weight have opposite signs, or when the value of the correlation coefficient

is substantially smaller than the value of the beta weight. There is some suppression

in our graduate GPA example, as evidenced by the fact that the bivariate correlation

Y

X1

X2

(A) Classical Suppression

Y

X2

X1

(B) Net Supression

FIGURE  4 Venn diagram illustrating suppression in multiple regression.
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between graduate grades and GRE Quantitative scores is positive, and the regression

coefficient is negative. This coefficient is not statistically significant, however, so

that a suppression effect in the population cannot be inferred.

Assumptions and Problems in Multiple Regression

Multiple regression is a powerful procedure, but researchers need to pay attention to

potential problems in using it—many of which relate to underlying assumptions.

This section discusses some issues of concern.

MULTICOLLINEARITY A problem known as multicollinearity can occur in multiple

regression analysis when the independent variables are too highly intercorrelated.

Multicollinearity should be avoided for several reasons. First, if the independent

variables are highly correlated, they add little new information to the regression

when used in combination—and, a degree of freedom is used up for each redundant

predictor, making it more difficult to reject the null hypothesis. Second, regression

results when multicollinearity is present tend to be unstable. And third, as a result of

the second problem, the regression coefficients can be misleading and render inter-

pretation of the results problematic.

The easiest way to prevent multicollinearity is to avoid including highly inter-

correlated independent variables in the regression equation. In general, researchers

should avoid the use of a set of independent variables when there are intercorrela-

tions that are .85 or higher. However, it is not always possible to detect multi-

collinearity by simply inspecting bivariate correlation coefficients, because

combinations of variables sometimes create multicollinearity.

Computer programs that perform regression can be instructed to avoid multi-

collinearity by establishing a tolerance. Tolerance is computed by treating each predictor

as the dependent variable in a multiple regression analysis, and determining the R2 when

the other independent variables are used as predictors; tolerance is 1 minus this R2 value.

Thus, if a predictor variable were totally uncorrelated with other independent variables,

tolerance would be 1.00. Tolerance would be .00 if the predictor variables were perfectly

intercorrelated. Tolerance is usually between .00 and 1.00, with higher values being more

desirable. The computer can be instructed to automatically exclude any predictor whose

tolerance falls below a specified level (e.g., .10). However, it might be preferable to make

your own choice about variables to exclude, rather than letting the computer mechanically

rule out predictors. This can be accomplished by inspecting the tolerances for all vari-

ables and then re-running the analysis after deciding which, if any, should be omitted.

TIP: A problem called singularity occurs if independent variables are
perfectly correlated. The calculation of regression coefficients is done
through matrix algebra, and singularity prohibits some of the necessary
operations. Singularity would occur if, for example, four rather than three
dummy variables were included in a regression analysis to represent a four-
category nominal variable.

VIOLATION OF ASSUMPTIONS Like all inferential statistics, the use of multiple

regression as an inferential tool is based on certain assumptions. First, multivariate
normality is the assumption that each variable and all linear combinations of the

variables are normally distributed. Second, linearity is assumed—i.e., it is assumed

that there is a straight line relationship between all pairs of variables. Third, there is
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FIGURE  5 Residual scatterplots illustrating violations of assumptions.

an assumption of homoscedasticity, i.e., that the variability in scores for one variable

is approximately the same at all values of another variable.

In bivariate statistics, frequency distributions of individual variables and scat-

terplots of the two variables in the analysis are used to assess the violation of under-

lying assumptions. In multiple regression, researchers examine residual scatterplots
that plot errors of prediction on one axis and predicted values of the dependent vari-

able on the other. Residual scatterplots can be produced by major software packages.

When the assumptions for multiple regression are met, the residuals are dis-

tributed approximately in a rectangular form, with a concentration of values along a

straight line in the center. Figure 5(A) presents an example of a residual scatterplot in

which all assumptions are met. When multivariate normality is achieved, the errors

of prediction are normally distributed around each value of Y�, and so there should

be a clustering of residuals along the center line, with residuals trailing off on either

side. Figure 5(B) illustrates a residual scatterplot in which the distribution of residu-

als is skewed (i.e., there are more values above the center line than below it). If non-

linearity is present, the overall shape of the scatterplot would be curved rather than

rectangular, as illustrated in Figure 5(C). Finally, Figure 5(D) illustrates a violation

of the assumption of homoscedasticity, showing that the errors of prediction are not

comparably distributed for all predicted values of Y.

If there is evidence that assumptions have been violated, it may be possible to

address the problem through transformations of the original data. Transformations

such as computing the square root, taking logs, or computing the reciprocal of vari-

ables can help to stabilize the variance and achieve linearity and normality. A fuller

discussion of transformations and their effects may be found in Tabachnick and

Fidell (2007) or Cohen et al. (2003).

TIP: Another assumption in multiple regression is that errors of
prediction are independent of one another. This might not be the case if,
for example, systematic changes occurred over the course of collecting
data (e.g., systematic improvements over time when implementing an
intervention). If there is a reason to suspect nonindependence of errors
that is related to the order of cases, there are tests (e.g., the 
Durbin-Watson statistic) to detect this problem.
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OUTLIERS Extreme cases that are legitimate outliers can have a strong impact on

the regression solution and therefore need to be diagnosed and addressed. Outliers for

individual variables can be detected by examining frequency distributions for vari-

ables in the analysis. Even when there are no univariate outliers, however, there can

be multivariate outliers that represent extreme combinations of independent variables

in the context of the dependent variable.

Multivariate outliers can also be detected through an analysis of the residuals.

Standardized residual values that are greater than 3 or less than �3 are considered

multivariate outliers. In our example of predicting graduate GPA, the standardized

residuals ranged from �.35 to .22, indicating the absence of outliers. Computer pro-

grams for multiple regression provide other residual analyses that help the researcher

evaluate extreme cases. When extreme cases are found, they should be eliminated

from the analysis or rescored.

COMPUTER ANALYSIS AND MULTIPLE REGRESSION

Multiple regression analyses are almost always performed by computer, and therefore

it is important to know how to read output from a regression analysis. This section

discusses printouts for the analysis of the graduate GPA data presented in Table 1.

Computer Example of Simultaneous Regression

Figure 6 presents portions of the SPSS printout for the standard (simultaneous) regres-

sion of graduate GPA regressed on the four predictor variables, which were produced

through the Analyze ➜ Regression ➜ Linear commands. Panel A shows that all four

predictors were entered as a block (Method � Enter) for the dependent variable

Graduate GPA. Panel B summarizes features of the overall regression model. The

value of the multiple R (.940) and R2 (.883) are presented, followed by the value of the

adjusted R2 (.852) and the standard error of estimate (.170). The standard error could

be used to build confidence intervals around predicted values of graduate grades.

The overall test for the significance of the regression is presented in Panel C,

labeled ANOVA. The printout shows the sums of squares, degrees of freedom, and

mean squares due to two sources: regression and residuals. The overall F ratio for

this analysis is 28.427, similar to the value we computed manually. The significance

(probability) is .000, i.e., less than 1 in 1,000 that an F this large occurred by chance

alone. Thus, the independent variables as a group were significantly correlated with

the dependent variable.

The next two panels (Coefficients) provide information about individual pre-

dictors. In Panel D, the first column lists all predictor variables, and the column

headed by B shows the regression coefficients (b-weights) associated with each.

These values and the value of the intercept constant (Constant) are the ones we pre-

sented earlier as the regression equation. The next column indicates the standard er-

rors for each b-weight. Coefficients with large standard errors are unreliable, and

their values may vary from sample to sample. Next, the standardized regression co-

efficients (b-weights) are shown in the column headed Beta. The next two columns

of panel D provide information on statistical tests for individual regression coeffi-

cients. The t statistic is computed by dividing the b-weight by its standard error, and

the value is shown in the column titled t. The next column (Sig.) indicates the prob-

ability that the regression coefficients reflect sampling fluctuation. In this example,

the coefficients for undergrad GPA, GRE Verbal, and Motivation are significant be-

yond the .05 level. GRE Quant, however, is not statistically significant. Its inclusion
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Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.

95% CI 
for B

B
Std. 
Error Beta

Lower 
Bound

Upper
Bound

1 (Constant) -1.215 .446 -2.727 .016 -2.165 -.266

Undergrad GPA .672 .200 .460 3.364 .004 .246 1.097

GRE Verbal .003 .001 .457 3.189 .006 .001 .005

GRE Quant  .000 .001 -.113 -.898 .383 -.002 .001

Motivation Score .012 .005 .268 2.307 .036 .001 .022

Model R R Square
Adjusted 
R Square

Std. Error of
the Estimate

1 .940a .883 .852 .1700

Model Variables Entered Variables Removed Method

1 Motivation Score,
GRE Quant,

Undergrad GPA, 
GRE Verbala

.

Enter

Regression
A Variables Entered/Removedb

a. All requested variables entered.
b. Dependent variable: Graduate GPA

B Model Summary

a. Predictors: (Constant), Motivation Score, GRE Quant,
Undergrad GPA, GRE Verbal

C ANOVAb

Model Sum of Squares df
Mean
Square F Sig.

1 Regression 3.285 4 .821 28.427 .000a

Residual .433 15 .029

Total 3.718 19

a. Predictors: (Constant), Motivation score, GRE Quant, Undergrad GPA,
GRE Verbal

b. Dependent variable: Graduate GPA

D Coefficientsa

a. Dependent variable: Graduate GPA

FIGURE  6 SPSS printout of simultaneous regression.
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FIGURE  6 Continued

a. Dependent variable: Graduate GPA.

Model

Correlations Collinearity Statistics

Zero-order Partial Part Tolerance VIF

1 (Constant) 

Undergrad GPA .866 .656 .296 .415 2.409

GRE Verbal .761 .636 .281 .379 2.640

GRE Quant .466 -.226 -.079 .493 2.029

Motivation Score .710 .512 .203 .577 1.733

E Coefficients

in the regression analysis does not significantly improve the prediction of graduate

grades, over that which is achieved through the other three predictors. Finally, the

last two columns present confidence intervals around the b-weights. For example,

the 95% CI for the first b coefficient of .672—the one for undergraduate GPA—is

from .246 to 1.097. This interval does not include 0.00, consistent with the t-statistic

results indicating that the coefficient is significantly different from zero.

Panel E, a continuation of the previous Coefficient panel, presents various

statistics for each predictor. Three columns under the heading Correlations show the

zero-order, partial, and semipartial (Part) coefficients, respectively, for each inde-

pendent variable with graduate GPA. Note that the semipartial correlation coeffi-

cients for the full equation indicate that the unique contribution of undergrad GPA

and GRE Verbal is about equal when the other two predictors are in the equation

(i.e., just under .30). The next two columns show statistics on possible multi-

collinearity. In the Tolerance column, we see that all values are well above the

default for excluding a multicollinear variable, which is .0001 in SPSS. The lowest

tolerance is .379 (GRE Verbal), indicating no multicollinearity in this example. The

final column shows the variance inflation factor (VIF), which is the reciprocal of

tolerance (i.e., 1 � tolerance).

Computer Example of Stepwise Regression

Figure 7 shows SPSS output for a stepwise regression of the same data set, i.e., the

data in Table 1. Panel A summarizes what happens in the three steps. In Model 1, we

see that undergrad GPA was entered first. The variable stepped in first is the

predictor with the highest correlation, which in this case is undergrad GPA. We also

see in the right column that stepwise was the method, that the criterion for the prob-

ability of F-to-enter was .050, and that for F-to-remove was .100. In stepwise regres-

sion, statistical criteria must be indicated for variables to enter and exit the equation.

Probability to enter is the level that must be achieved by a regression coefficient for

a variable to go into the equation. Probability to remove is used to determine vari-

ables going out. The two values shown (.050 and .100) are default values that could

be modified by the analyst. Next, we see that in Model 2, the variable GRE Verbal

was stepped into the equation. This is the variable that, when added to the equation

with Undergrad GPA, results in the biggest increment to graduate GPA and adds

significant predictive power. Finally, in Model 3, Motivation score is stepped into the

equation along with the previous two. The fourth predictor, GRE Quant, was not en-

tered into the equation because it failed to meet the criterion for the probability of F
to enter.
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A Variables Entered/Removeda

Model
Variables
Entered

Variables
Removed Method

1 Undergrad GPA . Stepwise (Criteria: Probability-of-F-to-enter �� .050,
Probability-of-F-to-remove 	� .100).

2 GRE Verbal . Stepwise (Criteria: Probability-of-F-to-enter �� .050,
Probability-of-F-to-remove 	� .100).

3 Motivation Score . Stepwise (Criteria: Probability-of-F-to-enter �� .050,
Probability-of-F-to-remove 	� .100).

a. Dependent variable: Graduate GPA

B Model Summary

Model R
R

Square
Adjusted
R Square

Std. Error of 
the Estimate

Change Statistics

R Square
Change

F
Change df1 df2

Sig. F
Change

1 .866a .751 .737 .2270 .751 54.157 1 18 .000

2 .912b .832 .812 .1917 .081 8.239 1 17 .011

3 .937c .877 .854 .1689 .045 5.890 1 16 .027

a. Predictors: (Constant), Undergrad GPA
b. Predictors: (Constant), Undergrad GPA, GRE Verbal
c. Predictors: (Constant), Undergrad GPA, GRE Verbal, Motivation Score

C ANOVAd

a. Predictors: (Constant), Undergrad GPA
b. Predictors: (Constant), Undergrad GPA, GRE Verbal
c. Predictors: (Constant), Undergrad GPA, GRE Verbal,

Motivation Score
d. Dependent variable: Graduate GPA

Model
Sum of
Squares df

Mean 
Square F Sig.

1 Regression

Residual

Total

2.791

.927

3.718

1

18

19

2.791

.052

54.157 .000a

2 Regression

Residual

Total

3.093

.625

3.718

2

17

19

1.547

.037

42.089 .000b

3 Regression

Residual

Total

3.261

.457

3.718

3

16

19

1.087

.029

38.094 .000c

FIGURE  7 SPSS printout of stepwise regression.
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FIGURE  7 Continued

D Coefficientsa

Model

Unstandardized
Coefficients

Standardized
Coefficients

t Sig.B Std. Error Beta

1 (Constant)

Undergrad GPA
-.981

1.264

.572

.172 .866
-1.716

7.359

.103

.000

2 (Constant)

Undergrad GPA

GRE Verbal

-1.299

.936

.002

.495

.185

.001

.641

.363

-2.622

5.064

2.870

.018

.000

.011

3 (Constant)

Undergrad GPA

GRE Verbal

Motivation Score

-1.282

.662

.003

.012

.437

.198

.001

.005

.454

.377

.278

-2.936

3.340

3.374

2.427

.010

.004

.004

.027

a. Dependent variable: Graduate GPA

E Excluded Variablesd

a. Predictors in the model: (Constant), Undergrad GPA
b. Predictors in the model: (Constant), Undergrad GPA, GRE Verbal
c. Predictors in the model: (Constant), Undergrad GPA, GRE Verbal, Motivation Score
d. Dependent variable: Graduate GPA

Model Beta In t Sig.
Partial

Correlation

Collinearity
Statistics

Tolerance

1 GRE Verbal

GRE Quant

Motivation Score

.363a

.109a

.259a

2.870

.827

1.782

.011

.420

.093

.571

.197

.397

.616

.810

.585

2 GRE Quant

Motivation Score

-.143b

.278b
-1.013

2.427

.326

.027

-.245

-.519

.498

.583

3 GRE Quant -.113c -.898 .383 -.226 .493

Panel B summarizes the regression analysis for the three models. For each of

the three models, the output shows the value of R, R2, adjusted R2, the standard error

of estimate, and then statistics associated with change. In model 1, the value of R is

simply the bivariate correlation between the predictor entered first (undergrad GPA)

and the dependent variable, graduate GPA. The R2 change is the difference between

.00 and .751, i.e., .751. The next row shows statistics for the second model, in which

both undergrad GPA and GRE Verbal scores are in the equation, as indicated in foot-

note b. We see that R2 has increased from .751 to .832, and that the amount of R2

change is .081. The F for testing the significance of adding this predictor is 8.239

which, with 1 and 17 degrees of freedom, is significant at p � .011. The bottom row

shows comparable information for the model in which three predictors are in the

equation. The R2 change of .045 is significant at p � .027.

Panel C shows three sets of ANOVA results in which the sum of squares due to

regression for each of the three models is contrasted with sum of squares residual. In
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all three models, the total sum of squares (total variability) is 3.718, but each succes-

sive model has a larger value for SSRegression, because each new predictor “explains”

more variability in graduate school grades. Note, however, that although SSRegression

gets larger in each model, the F statistic gets smaller because the degrees of freedom

in the numerator increases—a good lesson in why it may be unwise to include too

many predictors when sample size is small. The overall regression equation is, in

each model, significant at p � .001.

Panel D shows information about individual predictors in each of the three

models. These coefficients indicate what the regression equation for predicting new

values of graduate GPA would be with the model’s predictors in the equation. For

example, in Model 2, which predicts graduate GPA on the basis of undergrad GPA

(X1) and GRE Verbal scores (X2), the regression equation would be Y� � �1.299 �
.936 (X1) � .002 (X2). For the variables in the equation in each model, the printout

lists the regression coefficient (B), standard error of B, Beta weight, t statistic for the

regression coefficient, and significance of t. In all three models, all variables are sig-

nificant beyond the .05 level.

Finally, Panel E shows information about variables not yet entered in the regres-

sion. In Model 1, there are three variables not yet entered—GRE Verbal, GRE

Quantitative, and motivation scores. The statistical information indicates what would
happen if each variable were entered in the next step. The value under Beta In is the

standardized regression coefficient for each predictor if the variable were to enter the

regression equation in step 2, and the next two columns shows the t value for this co-

efficient, if entered next, and its significance. The partial correlation for the predictor,

holding undergrad GPA constant, is shown in the next column, followed by informa-

tion on the minimum tolerance. This represents the smallest tolerance any variable

already in the equation would have if the specified predictor were included. In this ex-

ample, all of the Tolerance values for the three predictors exceed .01, indicating no

problem with multicollinearity for any variables that might enter. In Model 1, we see

that the variable with the highest partial correlation with graduate GPA, holding un-

dergrad GPA constant, is GRE Verbal (.571), which is the variable chosen to enter in

the next step of the analysis, Model 2. When we look at the information for Model 3,

we see that the t for GRE Quantitative is �.898, which does not meet the criterion

to enter the equation: The significance of .383 for this fourth variable exceeds the

criterion of .05. Thus, the stepwise regression stopped at this point.

RESEARCH APPLICATIONS OF MULTIPLE REGRESSION

Multiple regression is a widely used statistical procedure in nursing research. This

section describes the major research applications of multiple regression and discusses

the presentation of multiple regression results in research reports.

The Uses of Multiple Regression

Nurse researchers use multiple regression to address a variety of research questions

regarding the relationships among variables. Multiple regression is also used for

prediction and for other purposes as well.

1. Answering research questions Multiple regression can help to answer a

number of different types of questions, including the following:

• How well does a particular group of independent variables explain or predict

a dependent variable? (For example, how well do undergraduate grades, GRE

scores, and achievement motivation explain graduate grades?)
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• How much does any single independent variable add to the prediction of a

dependent variable, over what is accomplished by other independent variables?

(For example, how much do motivation scores add to the prediction of grad-

uate GPA, over what undergraduate GPA and GRE scores contribute?)

• What is the relationship between any given independent variable and the

dependent variable, once other predictors are taken into account? (For

example, what is the relationship between undergraduate GPA and graduate

GPA, once the relationship between graduate GPA and the other three

predictors is controlled?)

• What is the relative importance of one predictor in explaining a dependent vari-

able in comparison with other predictors? (For example, what is the relative im-

portance of verbal versus quantitative GRE scores in predicting graduate GPA?)

As discussed earlier, the fourth question is difficult to answer unequivocally

when predictors are correlated. Multiple regression, however, is the basis for a

sophisticated technique known as path analysis, which is an approach to

causal modeling. Although correlations cannot be used to establish causality,

path analytic procedures can provide some evidence about the nature and

direction of causal influence among variables. Path analysis and other methods

of causal modeling are described in advanced textbooks such as those by

Tabachnick and Fidell (2007), Cohen et al. (2003), and Olobatuyi (2006).

2. Prediction Multiple regression provides an excellent vehicle for making

predictions about a dependent variable when only information on the independent

variables are available. Such predictions are typically undertaken for utilitarian

purposes. As an example, Ellett, Beckstrand, Flueckiger, Perkins, and Johnson

(2005) used multiple regression analysis to predict the insertion distance for plac-

ing gastric tubes in adults, on the basis of numerous clinical and demographic

variables. The best model used three predictors: sex, weight, and the measure-

ment from nose to the umbilicus, with the adult’s head flat on the bed.

3. Missing values imputation As you know, researchers often face the problem

of missing data for some participants on one or more variable. There are sever-

al different solutions to the missing values problem. Here we note only that

one approach is to use multiple regression to “predict” what the missing value

would have been, had it not been missing, and to substitute that predicted value

for the missing data.

The Presentation of Multiple Regression in Research Reports

Multiple regression analyses are typically so complex that they cannot adequately be

summarized in the text of a report without tables. The exception is when the main

focus of the analysis is to determine the value of R2, information that can readily be

reported in one or two sentences. However, this is rarely the only information sought

in a multiple regression analysis, so tables are almost always needed.

Unfortunately, there is no standard format for the tabular presentation of re-

gression results. This stems in part from the fact that regression is used to address

many different questions, but it also is due to the absence of widely accepted guide-

lines. Often, multiple tables are needed—one to show the means and SDs of

variables in the regression and correlations among them, and another presenting

regression results. In this section we discuss elements that we believe should be

included in regression tables, along with some options. The overall guiding principle

in laying out a regression table is to be parsimonious while conveying critical pieces

of information about the analysis.
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TABLE 8 Example of a Table for Simultaneous Regression

Predictor Variable b SE � t p

Constant �1.215 .45 �2.73 .016

Undergraduate GPA .672 .20 .46 3.36 .004

GRE Verbal scores .003 .001 .46 3.19 .006

GRE Quantitative scores .0007 .001 �.11 �.90 .383

Achievement Motivation scores .012 .005 .27 2.31 .036

Overall R2 � .88, Adjusted R2 � .85, F (4, 15) � 28.43, p � .001

Graduate Grade Point Average Regressed on Four Predictors (N � 20)

TABLES FOR SIMULTANEOUS REGRESSION RESULTS Regression tables are most

straightforward when simultaneous regression has been used. Table 8 summarizes

the standard regression of the graduate GPA data (i.e., for the computer printout

shown in Figure  6). At a bare minimum, a table for standard regression should

include the following: sample size; name of the dependent variable; names of all pre-

dictor variables; regression coefficients (either b or b, or both) for the predictors; the

value of R2; significance of the overall regression; and the significance of individual

predictors. Table 8 has all of these elements.

Sample size is sometimes specified in the title of the table, as it is in this exam-

ple, or sometimes in a table footnote. The name of the dependent variable should ap-

pear in the title. In tables reporting more than one regression analysis with the same

set of predictors, the dependent variables should be named in column headings,

which could also indicate Ns if they differ from one analysis to another.

Predictor variables are typically reported in the first column of the table, in

sufficient detail that a person can understand the nature of the variable without

having to refer to the text. In standard regression, the order of the variables in the list

is not important. Many researchers present standardized regression coefficients (bs)

for each predictor and omit unstandardized b-weights and their standard errors. If an

aim of the report is to communicate a regression equation for prediction purposes,

however, unstandardized b-weights (and the intercept constant) should be used instead

of, or in addition to, beta weights.

Statistical tests for individual predictors can be presented in various ways. In

this example, we showed the values of the t statistics associated with each regression

coefficient, and the associated p values. Information on t statistics is often omitted,

however, if the table presents regression results for two or three outcomes. In such a

case, researchers usually use the system of asterisks next to the beta weights to indicate

p thresholds, rather than giving actual p values.

The value of R2 for each analysis must be reported and, unless the sample size

is large, it is also wise to report the adjusted R2, as in this example. Some researchers

report the value of R in addition to R2, but it is unnecessary to do so because it is re-

dundant. We also suggest reporting the F for the overall test of the regression equa-

tion, degrees of freedom, and probability level, as we did at the bottom of this table.

Other elements are sometimes included in addition to, or instead of, some of

the statistics reported in Table 8. For example, if a separate correlation matrix has not

been presented, the regression table could show the value of r between each predic-

tor and the dependent variable. Another option is to include a column for squared

semipartial correlations, showing the unique proportion of variance associated with

each predictor.
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TABLE 9 Example of a Table for Hierarchical Regression

Depression
Parenting 

Stress Alcohol Abuse

Step Predictor Betaa R2 Change Betaa R2 Change Betaa R2 Change

1 Household Composition .01** .01*** .02***
Mother present �.03 �.01 �.08***

Partner present �.03 �.07** �.09***

No. of children .00 .07* �.09***

2 Economic Variables .02** .01** .00

Receiving welfare .00 .07** .00

Employed �.03 .01 .00

Has HS diploma �.11*** �.04* .06**

3 Psychosocial Variables .24*** .07* .04***

Diff. Life Circs. .39*** .18*** .19***

Self-Esteem scale �.24*** �.18*** .02

Social Support scale �.07*** .04 �.02

Cumulative R 2 .27*** .09*** .06***

aBetas shown are for the last step.

*p � . 05 **p � .01 ***p � .001

Hierarchical Multiple Regression of Depression, Parenting Stress, 
and Alcohol Abuse in Low-Income Teenage Mothers (N � 1892)

TABLES FOR HIERARCHICAL REGRESSION All the basic elements for a standard

regression should also be included in a hierarchical regression table—i.e., sample

size, names of dependent and predictor variables, regression coefficients, the value

of R2, and results of significance tests. In addition, information on the changes to R2

at each step of the analysis and the significance of the changes should be presented.

Table 9 presents results for three hierarchical regression analyses using data

from a large sample of teenage mothers. Depression scale scores, Parenting Stress

scale scores, and scores on a measure of alcohol abuse were regressed on three blocks

of predictors. Block 1 consists of variables about household composition—whether

the young mother’s own mother (the maternal grandmother) lives in the household,

whether her partner lives in the household, and number of her own children. Block 2

involves variables on the young woman’s economic situation—whether she receives

cash welfare assistance, whether she is employed, and whether she has a high school

diploma. The third block includes psychosocial variables—scores on a Difficult Life

Circumstances scale (items include whether someone close to the teen is in jail,

whether she was mugged in the past year, etc.); scores on a Self-Esteem scale, and

scores on a Social Support scale. These predictors are shown in the left column,

grouped in blocks in the order of entry into the regression.

Standardized regression coefficients (bs) for each independent variable are

shown in the column labeled “Beta,” for each dependent variable. Asterisks next to the

beta weights indicate whether t tests for the predictors were statistically significant.

For the Depression outcome variable, for example, all three psychosocial predictors,

plus educational attainment, were statistically significant. For each dependent variable
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there is also a column labeled “R2 Change” that shows the increment to R2 as each of

the three blocks enters the equation. The asterisks next to this value indicate whether the

F test for the increment to R2 is statistically significant. In this example, even though

the increments to R2 are often small, each change is significant because of the large

sample (N � 1,892). The final row of the table shows the cumulative R2—the

amount of variance explained when all predictors are in the equation—which equals

all of the R2 changes added together. Asterisks are used again here to indicate the

probability level for the overall equation. In this example, the cumulative R2s range

from .06 (Alcohol abuse) to .27 (Depression), and all are statistically significant.

Adjusted R2s are not included in this table because original and adjusted R2 values

were virtually identical with this large sample.

TIP: To economize on space, some researchers label the column for
changes to R2 as R2 � (delta); � is the standard scientific symbol
for change.

A dilemma in creating tables for hierarchical regression is how to present the

regression coefficients. The betas change at each step, and yet the format shown in

Table 9 presents only one beta per predictor. It is probably best to present betas for

the final step (i.e., for the final equation), as we did in this table—which we mention

in the footnote. An alternative would have been to use the heading “Beta for Last

Step.” Regrettably, most tables for hierarchical regression in research reports fail to

specify whether the betas shown are the values when the predictor first entered the

equation or at the final step.

If it is theoretically important to show how the betas change as successive

blocks of predictors are stepped into the equation—or if the addition of blocks dra-

matically changes the betas and these changes are of interest—all beta values should

be shown in the table. Usually, however, changes to betas can only be presented for

one or two dependent variables in one table, especially if there are more than three

blocks of predictors. An example of this type of table, for the regression of the

Depression and Parenting Stress scores from the previous analysis, is shown in

Table 10. Beta weights are shown for each block of variables entered in successive

steps. The R2 changes and cumulative R2 values are shown in the bottom two rows of

the table, corresponding to values at each of the three steps. In this example, the

changes to beta for predictors entered in the equation early tended to be relatively

small (e.g., for mother present in the household, the betas were �.01, �.01, and �.03

at steps 1 through 3, respectively), and so in this example the expanded format is not

especially informative. Variants of the format used in Table 9 are more common in

research journals than that used in Table 10.

These tables illustrate how dummy-coded predictor variables can be handled

in tables. When effect coding or orthogonal coding is used, coding must be explicitly

specified, either as part of the label for the predictor or in a footnote. This is not usu-

ally necessary, however, for dummy variables. Five of the variables in Tables 9 and

10 are dummy coded: mother present, partner present, receiving welfare, employed,

and has high school diploma. The labels for these variables indicate the condition

that is coded 1. For example, the variable “employed” is, by convention, understood

to represent the employed condition, which is coded 1, while the unemployed condi-

tion is coded 0. The coding scheme can, of course, be explicitly indicated. For exam-

ple, the employment variable could have had the following label: Employment status

(1 � employed, 0 � not employed).
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TABLE 10 Example of a Table for Hierarchical Regression

Depression Parenting Stress

Step Predictor
Step 1 Step 2

Beta Weights
Step 3 Step 1 Step 2

Beta Weights
Step 3

1 Household Composition

Mother present �.01 �.01 �.03 �.01 �.01 �.01

Partner present �.04 �.03 �.03 �.09*** �.07** �.07**

No. of children .04 .02 .00 .09*** .08*** .07*

2 Economic Variables

Receiving welfare .01 .00 .08** .07**

Employed �.04 �.03 .00 .01

Has HS diploma �.14*** �.11*** �.06** �.04*

3 Psychosocial Variables

Diff. Life Circs. .39*** .18***

Self-Esteem scale �.24*** �.18***

Social Support scale �.07*** .04

R2 Change .01** .02* .24*** .01*** .01** .07*

Cumulative R2 .01** .03*** .27*** .01*** .02*** .09***

*p � .05 **p � .01 ***p � .001

Hierarchical Multiple Regression of Depression and Parenting Stress 
in Low-Income Teenage Mothers (N � 1892)

TIP: Regression tables in journals are often flawed in their omission of
information on how to read dummy variables. For example, if a predictor
is listed as “Sex” or “Gender,” readers cannot interpret the direction of sex
differences on the dependent variable unless there is explicit information
on how males and females were coded.

TABLES FOR STEPWISE REGRESSION Basic information for stepwise regression is

similar to that for standard regression. In stepwise regression, however, the listing of

independent variables is critical, because it indicates the order of entry of predictors. It

is usually not necessary to show the amount of change and significance of R2 changes.

Thus, for each dependent variable included in the table there might simply be two

columns showing values for beta weights and cumulative R2. (The reader can compute

the R2 change at each step simply by subtracting the value of R2 in one row from the

value of R2 in the preceding row.) The names of predictors that did not get stepped into

the equation at statistically significant levels should be specified in a footnote.

NARRATIVE PRESENTATION OF REGRESSION RESULTS The features of a regres-

sion table that a researcher chooses to highlight in the text depend on the nature of the

research questions posed. We present one example of the narrative that might be used

to describe Table 9, and urge you to consult journal articles for other examples.

In this large sample of adolescent mothers, maternal household characteris-

tics, economic circumstances, and psychosocial state did a modest job of explaining

variation in the three dependent variables, as shown in Table 9. The overall R2 for
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predicting alcohol abuse was especially low (R2 � .06), and was only slightly better

for Parenting Stress scores (R2 � .09). The regression was substantially more suc-

cessful in predicting Depression scores (R2 � .27). In all three cases, the overall re-

gression was statistically significant beyond the .001 level.

Variables in the Household Composition block, entered in the first step, ac-

counted for a very small (albeit significant) proportion of explained variance in all

three analyses. None of the three household variables were, taken individually, sig-

nificantly related to Depression scores, once other factors were taken into considera-

tion. However, the presence of a husband or boyfriend in the teen mothers’ house-

hold was associated with significantly less parenting stress and lower abuse of

alcohol. Their own mothers’ presence in the household was also associated with less

alcohol abuse. The larger the number of children in the household, the greater is the

amount of parenting stress, but the lower is the amount of alcohol abuse.

The block of Economic Variables also made only modest contributions to

explained variance for all three outcome variables, with R2 increments ranging

from .00 to .02. The young mothers’ employment status was unrelated to any of

the three outcomes. Receipt of cash welfare assistance was associated with in-

creased parenting stress but was unrelated to depression and alcohol abuse, once

other predictors were controlled. Educational attainment was significantly related

to all three dependent variables: Women who had a high school diploma were

less depressed, had less parenting stress, but were more likely to abuse alcohol.

The inclusion of the three Psychosocial Variables greatly improved the predic-

tive power of all three regressions. The increments to R2 ranged from .04 for alcohol

abuse to .25 for depression scores; all increments were statistically significant. The sin-

gle most powerful predictor was scores on the Difficult Life Circumstances scale, a

measure of ongoing, daily stress. Young women with a lot of daily stress were signifi-

cantly more likely to be depressed, to feel stressed as parents, and to abuse alcohol.

High self-esteem was associated with a lower risk of depression and parenting stress,

but was unrelated to alcohol abuse. Women with greater amounts of social support

tended to be less depressed, but social support was not related to parenting stress or al-

cohol abuse.

Research Example

The following study illustrates the use of multiple regres-

sion to test relationships predicted on the basis of a theory.

Study: “Effects of caregiving demand, mutuality, and

preparedness on family caregiver outcomes during cancer

treatment” (Schumacher et al., 2008)

Study Purpose: The purpose of this study was to ex-

plore the degree to which three caregiver constructs

based on role theory would predict caregiving-specific

outcomes among caregivers caring for family members

during their cancer treatment.

Methods: A cross-sectional correlational design was used

to explore relationships among theoretically relevant vari-

ables. Data were obtained from a sample of 87 caregivers,

who were recruited from outpatient units of three cancer

centers in the mid-Atlantic region of the United States.

Caregivers were asked to complete a series of question-

naires, which included nine outcome measures relating to

the strain and burden of the caregiving role, as well as

scales for three variables posited to contribute to strain: the

time demands associated with caregiving tasks (Demand),

the extent of mutually positive relationships between care-

giver and patient (Mutuality), and degree of preparedness

for caregiving (Preparedness).

Analysis: Simultaneous multiple regression was used to

explore the degree to which the various caregiving out-

comes could be predicted on the basis of the three caregiv-

ing role variables. Two control variables, the caregiver’s

age and sex, were included as predictors in the analyses.

Results: The five predictor outcomes, as a set, ex-

plained a significant proportion of variance in all nine

caregiver burden outcomes, with the value of adjusted

268



Multiple Regression

TABLE 11 Simultaneous Regression Predicting Outcomes for Family Caregivers of Cancer Patients
During Cancer Treatment (N � 87)

Predictor Caregiver Outcomes

Global Strain Fatigue Anger

Beta p Beta p Beta p

Caregiver sex (1 � female) .14 �.03 �.15

Caregiver age .00 �.07 �.01

Caregiving time demand .44 � .01 .25 � .05 .15

Mutuality/positive relationship �.24 � .05 �.16 �.49 � .01

Preparedness for caregiving �.18 � .05 �.25 � .05 �.13

R2 .40 .21 .33

Adjusted R2 .36 .16 .29

Overall Significance � .01 � .01 � .01

Adapted from Table 4, Schumacher et al., 2008

R2 ranging from .09 for scores on a Vigor scale, to .36

for scores on a scale measuring Caregiving Difficulty.

Neither age nor sex was significantly associated with

any outcomes, when other predictors were in the analysis.

The three role variables were persistently significant

predictors of the burdens of caregiving. Table 11 pres-

ents beta weights and the overall value of R2 for three il-

lustrative outcomes. For Global Strain scores, 36% of

the variance was explained, and all three role variables

were significant independent predictors; time demand

seemed to play an especially important role in explain-

ing overall strain. With regard to Fatigue scores, the

value of R2 was much lower (.16), but both Demand and

Preparedness were significant predictors. Finally, the

only significant predictor of scores on the Anger scale

was Mutuality: Caregivers who had a less favorable re-

lationship with their family member expressed a higher

degree of anger regarding their role. Each 1 standard de-

viation (SD) decrease in Mutuality was associated with

nearly one-half (.49) SD increase in Anger. The

researchers concluded that the three role variables,

derived from a theoretical model of caregiving, were

predictive of negative caregiving outcomes and suggest

avenues for tailoring interventions.

Summary Points

• Multiple regression is a statistical procedure for

understanding and predicting a dependent variable

on the basis of two or more independent variables.

The basic multiple regression equation for pre-

dicting Y (Y�) involves an intercept constant, plus

the values of the predictor variables weighted by

corresponding regression coefficients (b weights).

• When the equation is specified in standardized

form, the regression coefficients are called beta
weights (b).

• The multiple correlation coefficient (R) repre-

sents the magnitude (but not direction) of the rela-

tionship between the dependent variable and the

predictor variables, taken together.

• The square of R (R2) indicates the proportion of

variance in Y accounted for by the predictors.

• R2 is sometimes presented after a sample size adjust-

ment is made. The new value is called adjusted R2.

• Multiple regression offers the potential for statis-
tical control: The regression coefficients indicate

the number of units Y� is expected to change for

each unit change in a given predictor, when the

effects of the other predictors are held constant.

• Control is achieved through partialling overlapping

variability in the predictors. The partial correlation
between X1 and Y (ry1.2) is the degree to which X1

and Y are correlated after the influence of a third

variable, X2, is removed.

• Semipartial correlation (ry(1.2)) is the correlation

between all of Y and X1, from which X2 has been

partialled out. Squared semipartial correlation
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VARA VARB VARC DVAR

VARA 1.00
VARB .62 1.00
VARC .77 .68 1.00
DVAR .54 .36 .48 1.00

†

†

coefficients are sometimes used to compare the

relative importance that predictors uniquely make

to the prediction of Y.

• An F-ratio statistic that contrasts the sum of squares

due to regression against the sum of squares due to

residuals is used to test the overall significance of

the regression.

• An F statistic can also be used to test the significance

of variables added to the regression equation—i.e.,

the significance of the increment to R2.

• The significance of individual regression coeffi-

cients is determined through t statistics.

• Predictor variables are entered into the regression

equation either through a simultaneous regres-
sion model (all predictors entered at the same

time); a hierarchical regression model (variables

entered in a sequence determined by the re-

searcher); or a stepwise regression model (vari-

ables entered in the order that contributes most to

the increment of R2). An important difference

between these methods concerns what happens to

overlapping variability among intercorrelated

independent variables.

• In multiple regression, the dependent variable

should be a continuous variable measured on an

interval or ratio scale.

• Independent variables can be continuous, but they

can also be coded nominal-level variables. Alter-

native coding schemes for nominal-level variables

include dummy coding, effect coding, and

orthogonal coding.

• Interaction terms can also be included in the analy-

sis, and thus data that are amenable to ANOVA can

also be analyzed through multiple regression.

• Researchers using multiple regression need to attend

to potential problems, such as multicollinearity—

the inclusion of independent variables that are too

highly correlated. Multicollinearity can be detected

by examining the tolerance of predictors.

• Researchers should also check to determine that the

assumptions for multiple regression have not been

violated, and this is usually done through inspection

of residual scatterplots.

• In interpreting regression results, researchers should

also be alert to the possibility of suppression, a phe-

nomenon that makes a predictor with little or no

correlation with the dependent variable look impor-

tant, because it suppresses irrelevant variability in

other predictors.

• Care should be taken to ensure an adequate sample

size for multiple regression, preferably through a

power analysis.

Exercises

The following exercises cover concepts presented in this chap-

ter. Answers to Part A exercises that are indicated with a dag-

ger (†) are provided here. Exercises in Part B involve comput-

er analyses, and answers and comments are offered on the 

Web site.

PART A EXERCISES

A1. Using the regression equation for predicting graduate GPA

presented in this chapter, compute the following for the

last two students in Table 1: (a) the predicted value of Y;

and (b) the squared error term.

A2. Using the following information for R2, k, and N, calculate

the value of the F statistic for testing the overall regression

equation and determine whether the F is statistically sig-

nificant at the .05 level:

(a) R2 � .53, k � 5, N � 120

(b) R2 � .53, k � 5, N � 30

(c) R2 � .28, k � 4, N � 64

(d) R2 � .14, k � 4, N � 64

A3. Which, if any, of the tests described in Exercise A2 would

be statistically significant with a � .001?

A4. Following is a correlation matrix:

†

†

†

(a) If DVAR were regressed on VARA, VARB, and

VARC, what is the lowest possible value of R2?

(b) In a stepwise regression, what would be the first pre-

dictor variable into the equation?

(c) In a stepwise regression, what would be the second

predictor variable into the equation?

A5. Suppose that, using dummy codes, smokers were coded 1

and nonsmokers were coded 0 on SMOKSTAT, and that

males were coded 1 and females were coded 0 on GEN-

DER. What would be the 4 codes for the interaction term?

270



Multiple Regression

†

†

†

A6. Using the Internet resource recommended in this chapter

(or another similar online calculator), find the 95% confi-

dence limits of R2 for the following situations:

(a) R2 � .22, k � 6, N � 100

(b) R2 � .22, k � 6, N � 200

(c) R2 � .22, k � 10, N � 100

A7. For the following situations, estimate how large a sample

would be needed for a multiple regression analysis to

achieve standard statistical criteria, using Table 7.

(a) Estimated R2 � .20, k � 6

(b) Estimated R2 � .13, k � 8

(c) Estimated R2 � .08, k � 4

PART B EXERCISES

B1. For these exercises, you will be using the SPSS dataset

Polit2SetC to do multiple regression analyses to predict level

of depression in the sample of low-income urban women.

You will need to begin by dummy coding the variable

race/ethnicity. First, create a frequency distribution for

racethn (Analyze ➞ Descriptive Statistics ➞ Frequencies),

then answer these questions: (a) What percentage of women

in this sample was African American, Hispanic, and White

or other? (b) Are there any women whose information for

racethn is missing? (c) How many new variables need to be

created so that race/ethnicity can be used in regression analy-

ses? (d) Which category do you think should be omitted?

B2. Now you can create the new dummy-coded variables. Select

Transform ➞ Recode ➞ Into Different Variables. Find

racethn in the variable list and move it into the slot for

“Numeric Variable 	 Output Variable.” On the right, under

Output Variable, type in a name for your first new variable

(e.g., black, afamer). In the slot for Label, you can type in a

longer label, such as “African American” if you so choose.

Then click Change, which will confirm the new variable as

the output variable. Next, click the “Old and New Values”

button, which will bring up a new dialog box. Under “Old

Value,” enter 1, which is the code for African Americans in

the original (“old”) variable racethn. Then, on the right under

New Value, click “Copy old value,” and then click the Add

button. Women who were coded 1 on racethn will also be

coded 1 on the new African-American variable. Next, under

Old Value, click Range and enter 2 and then “through” 3 (the

two codes for Hispanic and White/other women on racethn).

On the right under New Value, enter 0, then click Add, which

will code all non–African-American women as 0. Finally,

under Old Value, click “System- or user-missing,” and then

under New Value click “System missing,” then click Add.

Women who have missing data for racethn will now have a

missing values code for the new variable. Click Continue to

go back to the original dialog box, then click OK to run the

command. If you look at the last variable in your file in Data

View, you should see the new variable with values of .00 and

1.00 (which can be changed to 0 and 1 by going into Variable

View and changing the number of decimals to 0). Do the

analogous procedure for the next new race/ethnic group—

except remember to change the values coded 1 and 0. Now, run

frequencies on your new variables, and compare the results to

those from Exercise B1, making sure that your new variables

accurately reflect the original racial/ethnic distribution.

B3. In this exercise, you will run a simultaneous multiple regres-

sion analysis to predict the women’s level of depression

(scores on the CESD depression scale, cesd) based on several

demographic characteristics, socioeconomic characteristics,

health status, and self-reported incidence of abuse in the prior

year. The list of predictors is as follows: the two race/ethnicity

dummy variables you created in exercise B2; age; educatn
(educational attainment); worknow (a dummy variable for

currently employed); nabuse (number of different types of

abuse experienced in the past year, including verbal abuse, ef-

forts to control, threats of harm, and physical abuse); and

poorhlth (a dummy coded variable indicating self-reported

poor health at the time of the interview. Bring up the regres-

sion dialog box by selecting Analyze ➞ Regression ➞
Linear. Insert the variable cesd in the box labeled Dependent.

Insert the 7 predictor variables that we just mentioned into the

box for Independent(s). Make sure that Method is set to

“Enter,” the command for entering all predictors simultane-

ously. Click the Statistics pushbutton and then select the fol-

lowing options: Estimates (under “Regression Coefficients”);

Model Fit; Descriptives; and Collinearity Diagnostics. Then

click Continue, and OK to run the analysis. Answer the fol-

lowing questions: (a) How large is the sample on which the

regression analysis was run? (b) Interpret the mean value for

poor health self-rating. (c) Which predictor has the highest

zero-order correlation with cesd? (d) What were the values of

R2 and adjusted R2? (e) Which predictors in the analysis were

significantly predictive of the women’s depression scores,

once other predictors were included? Which were not signifi-

cantly predictive? (f) For this sample of women, which pre-

dictor variable appeared to be the most powerful in predict-

ing depression? (g) Did any of the tolerance levels suggest a

problem with multicollinearity?

B4. In this exercise, run a stepwise multiple regression to predict

depression scores, using the same predictors as in Exercise

B3. In the first SPSS Linear Regression dialog box, enter cesd
as the Dependent variable and the list of predictors in the

Independent slot, as in the previous exercise. For Method,

select “Stepwise.” For the Statistics options, you can omit

Descriptives and Collinearity Diagnostics because you have

already examined these, but this time you should select R
squared change. Run the analysis and then answer the follow-

ing questions: (a) How many predictors were entered before

the regression stopped? (b) Which predictor variables made it

into the regression—and which did not? Was the order of

entry of predictors consistent with the values of the zero-order

correlations? (c) Looking at the Model Summary panel, what

was the progression of the value of R2 from one step to the

next—and were these changes significant? What happens to

the standard error of the estimate with each progressive step?

(d) Were all models statistically significant—that is, was the

value of R2 greater than zero at each step? (e) Looking at the

†

†

†
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Answers to Exercises

A1. Student 19: Y� � 3.004, e2 � .009; Student 20: Y� � 3.397, e2 � .041

A2. a. F (5, 114) � 25.73, p � .05;

b. F (5, 24) � 5.41, p � .05;

c. F (4, 59) � 5.74, p � .05;

d. F (4, 59)� 2.40, p 	 .05 (NS)

A3. a and c

A4. a. lowest R2 � .292; b. VARA;

c. Cannot readily be determined

A5. Male smokers � 1, female smokers � 0, male nonsmokers � 0, female nonsmokers � 0

A6. a. .04 to .40; b. .12 to .32; c. .09 to .35

A7. a. 61; b. 109; c. 141
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“Excluded Variables” panel—and focusing on Model 4, were

any of the remaining predictors statistically significant?

B5. In this exercise, run a hierarchical multiple regression analy-

sis to predict cesd, using the same predictors as in Exercises

B3 and B4. Select the variables you would like to enter in

each step, being sure to think of a reasonable rationale for the

order of entry. In the first SPSS Linear Regression dialog box,

enter cesd as the Dependent variable, and the predictor(s) you

wish to enter in the first step in the Independent slot. Then,

click the pushbutton Next in the area labeled “Block.” Now

you can select your second block of predictors. Keep clicking

Next Block for each set of predictors, until all seven predic-

tors are included. The Method box should say “Enter.”

Examine your output, and pay special attention to changes in

R2 for each successive block of variables.

B6. It is tempting to think of the results obtained in the previous

three analyses as suggesting a causal link between the

women’s abuse experiences and their level of depression—

that is, inferring that being abused caused higher levels of

depression. However, the opposite might be the case. For ex-

ample, women who are depressed, lethargic, or absorbed

with personal problems might incite others to yell at them,

threaten them, or hit them. In the next analysis, we explore

the issue of direction of influence, though we caution

against firm causal conclusions. In this hierarchical regres-

sion, we will statistically control the women’s level of

depression 2 years earlier and then see if recent abuse expe-

riences affected current depression, with earlier depression

held constant. This is analogous to asking whether recent

abuse was related to changes in depression. In the first SPSS

Linear Regression dialog box, enter cesd as the Dependent

variable, and cesdwav1 as the predictor in the Independent

slot. Then, click the pushbutton Next in the area labeled

“Block.” Now enter nabuse (number of types of abuse) as

the predictor in the second block. The Method box should

say “Enter.” For statistical options select Estimates for the

Regression Coefficients, Model Fit, and R squared change.

Then run the analysis and answer these questions based on

the output: (a) What was the correlation between the CES-D

scores in the two waves of data collection? (b) Was R2 statis-

tically significant at both steps of the analysis? (c) What was

the change to R2 when abuse was added to the regression?

Was this significant—and, if so, what does this suggest? (d)

If you wanted to predict a woman’s current CES-D score

based on this analysis, what would the unstandardized

regression equation be?

B7. Using output from one of the previous four exercises (B3

through B6), create a table to summarize key results of the

analyses. Then write a paragraph summarizing the findings.

†

272



Multiple Regression

Olobatuyi, M. (2006). A user’s guide to path analysis. Lanham, MD: University Press of America.

Polit, D. F., & Beck, C. T. (2008). Nursing research: Generating and assessing evidence for nursing practice (8th ed.).

Philadelphia: Lippincott Williams & Wilkins.

Polit, D. F., & Sherman, R. (1990). Statistical power in nursing research. Nursing Research, 39, 365–369.

Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Boston: Allyn & Bacon.

Wood, A., White, I., & Thopson, S. (2004). Are missing data adequately handled? A review of published randomized controlled

trials in major medical journals. Clinical Trials, 1, 368–376.

Bekhet, A., Zauszniewski, J., & Wykle, M. (2008). Milieu change and relocation adjustment in elders. Western Journal of
Nursing Research, 30, 113–129.

Bu, X., & Wu, Y. B. (2008). Development and psychometric evaluation of the instrument: Attitude toward patient advocacy.

Research in Nursing & Health, 31, 63–75.

Certain, H., Mueller, M., Jagodzinski, T., & Fleming, M. (2008). Domestic abuse during the previous year in a sample of post-

partum women. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 37, 35–41.

Cha, E., Kim, K., & Burke, L. (2008). Psychometric validation of a condom self-efficacy scale in Korean. Nursing Research,
57, 245–251.

Chang, S., Wung, S., & Crogan, N. (2008). Improving activities of daily living for nursing home elder persons in Taiwan.

Nursing Research, 57, 191–198.

Cho, J., Holditch-Davis, D., & Miles, M. (2008). Effects of maternal depressive symptoms and infant gender on the interactions

between mothers and their medically at-risk infants. Journal of Obstetric, Gynecologic, & Neonatal Nursing, 37, 58–70.

Choi, M., Phillips, L., Figueredo, A., Insel, K., & Min, S. (2008). Construct validity of the Korean women’s abuse intolerance

scale. Nursing Research, 57, 40–50.

Corless, I., Voss, J., Nicholas, P., Bunch, E., Bain, C., Coleman, C., et al. (2008). Fatigue in HIV/AIDS patients with comor-

bidities. Applied Nursing Research, 21, 116–122.

Eastwood, J., Doering, L., Roper, J., & Hays, R. (2008). Uncertainty and health related quality of life 1 year after coronary an-

giography. American Journal of Critical Care, 17, 232–242.

Ellett, M., Beckstrand, J., Flueckiger, J., Perkins, S., & Johnson, C. (2005). Predicting the insertion distance for placing gas-

tric tubes. Clinical Nursing Research, 14, 11–27.

Gies, C., Buchman, D., Robinson, J., & Smolen, D. (2008). Effect of an inpatient nurse-directed smoking cessation program.

Western Journal of Nursing Research, 30, 6–19.

Good, M., & Ahn, S. (2008). Korean and American music reduces pain in Korean women after gynecologic surgery. Pain
Management Nursing, 9, 96–103.

Groth, S. W. (2008). The long-term impact of adolescent gestational weight gain. Research in Nursing & Health, 31, 108–118.

Im, E. O., Chee, W., Guevara, E., Lim, H., & Shin, H. (2008). Gender and ethnic differences in cancer patients’ needs for help:

An Internet survey. International Journal of Nursing Studies, 45, 1192–1204.

Li, Y., Scott, C., & Li, L. (2008). Chinese nursing students’ HIV/AIDS knowledge, attitudes, and practice intentions. Applied
Nursing Research, 21, 147–152.

Mak, S. S., Yeo, W., Lee, Y., Mo, K., TRse, K., Tse, S., et al. (2008). Predictors of lymphedema in patients with breast cancer

undergoing axillary lymph node dissection in Hong Kong. Nursing Research, 57, 416–425.

Polit, D. F., & Beck, C. T. (2008). Is there gender bias in nursing research? Research in Nursing & Health, 31, 417–427.

Schumacher, K., Stewart, B., Archbold, P., Caparro, M., Mutale, F., & Agrawal, S. (2008). Effects of caregiving demand,

mutuality, and preparedness on family caregiver outcomes during cancer treatment. Oncology Nursing Forum, 35, 49–56.

273



Shin, H., Kim, K., Kim, Y., Chee, W., & Im, E. (2008). A comparison of two pain measures for Asian American cancer pa-

tients. Western Journal of Nursing Research, 30, 181–196.

Xu, Y., Toobert, D., Savage, C., Pan, W., & Whitmer, K. (2008). Factors influencing diabetes self-management in Chinese peo-

ple with type 2 diabetes. Research in Nursing & Health, 31, 613–625.

GLOSSARY
Causal modeling The development and statistical testing of hypothesized causal relationships among phenomena.

Control The process of holding constant possible influences on the dependent variable under investigation.

Cross-validation The process of verifying the validity of the results of an analysis done with one subset of the sample by replicat-

ing the analysis with a second subset from the same sample.

Dummy coding A method of coding categorical variables into dichotomous variables, using codes of 0 and 1 to represent the pres-

ence or absence of an attribute (e.g., married = 1, not married = 0); results in dummy (indicator) variables.

Effect coding A way of coding categorical variables for multivariate analysis that uses 1, 0, and 1 to designate categories.

Hierarchical multiple regression A multiple regression analysis in which predictor variables are entered into the equation in or-

dered steps that are specified by the analyst; sometimes called sequential regression.

Matrix algebra A branch of mathematics that deals with rules for adding, subtracting, multiplying, and dividing matrices.

Multicollinearity A term that describes a correlation matrix in which two or more independent variables are highly correlated

with each other.

Multiple correlation coefficient An index that summarizes the magnitude of the relationship between two or more independent

variables and a dependent variable; symbolized as R.

Multiple regression analysis A statistical procedure for predicting the value of a dependent value on the basis of two or more in-

dependent variables, using least-squares estimation.

Multivariate statistics Statistical procedures for analyzing the relationships among three or more variables simultaneously.

Orthogonal coding A method of coding categorical variables in a regression analysis to make specific planned comparisons.

Orthogonal A term used to describe variables (or factors) that are uncorrelated.

Partial correlation The correlation between a dependent variable (Y) and an independent variable (X1) while controlling for the

effect of a third variable (X2); symbolized as ry1 2.

Reference group The omitted category in coding schemes for multivariate analyses, against which the effects for other categories

are compared.

Semipartial correlation A correlation between two variables (Y and X1) that partials out a third variable (X2), but only from one

of the variables being correlated; symbolized as ry(2 1).

Simultaneous multiple regression A multiple regression analysis in which all predictor variables are entered into the equation si-

multaneously; sometimes called direct or standard multiple regression.

Singularity A term that describes a correlation matrix in which two or more independent variables are perfectly correlated with

each other.

Statistical control The use of statistical techniques to isolate or remove variance in the dependent variable that is associated with

confounding variables, i.e., those extraneous to the analysis.

Stepwise multiple regression A multiple regression analysis in which predictor variables are entered into the equation in steps, in

the order in which the increment to R is greatest.

Suppression A phenomenon that sometimes occurs in multiple regression when a variable obscures (suppresses) or alters a rela-

tionship between other variables because of overlapping variability.

Tolerance A statistical index used to detect multicollinearity among independent variables, computed by regressing each inde-

pendent variable on other independent variables, and subtracting the resulting R2 from 1.00.

Zero-order correlation The bivariate correlation between two variables, without controlling or partialling out the effect of other

variables. 

d See Cohen’s d.

#

#
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R The symbol used to designate the multiple correlation coefficient, indicating the magnitude

(but not direction) of the relationship between the dependent variable and multiple independ-

ent variables, taken together.

R2 The squared multiple correlation coefficient, indicating the proportion of variance in the

dependent variable accounted for or explained by a group of independent variables; also

called the coefficient of determination.

Adjusted R2 The squared multiple correlation coefficient adjusted for sample size and num-

ber of predictors to give a more accurate estimate of relationships in the population; also

known as shrunken R2 and sometimes symbolized as .

Causal relationship A relationship between two variables such that one variable (the

“cause”) determines the presence/ absence or value of the other (the “effect”).

Code A numerical value assigned to a variable according to a set of rules to represent a status

on that variable (e.g., for gender, code 1 for males, code 2 for females).

Durbin-Watson statistic A statistical test used to detect nonindependence of errors of pre-

diction in a regression analysis.

Extraneous variable A variable that confounds the relationship between the independent

and dependent variables and that should ideally be controlled either in the research design or

through statistical procedures.

Path analysis A regression-based procedure for testing causal models, typically using nonex-

perimental data.

Residual scatterplot A scatterplot from a multivariate analysis that plots errors of prediction

on one axis and predicted values of the dependent variable on the other.

R
�2
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This chapter, which focuses on multivariate extensions of analysis of variance, continues to move us into new

realms of analytic complexity. The extensions, while conceptually not difficult to grasp, are mathematically for-

midable, and so our discussion of computations and formulas is even briefer here. We begin with a very simple

overview of the general linear model.

THE GENERAL LINEAR MODEL

The general linear model (GLM) encompasses a broad class of statistical techniques, and underlies most

analyses used in nursing research. The GLM is the foundation for such procedures as the t test, ANOVA, and

regression analysis. The GLM is an important model because of its generality and applicability to numerous
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research situations, but a thorough understanding of the GLM requires advanced

statistical training. We present a fairly superficial description of the text, this being

an introductory concept, and therefore we restrict our discussions of sophisticated

multivariate procedures to overviews without detailed explanations.

As the name implies, the GLM encompasses analytic procedures that fit data

to straight-line (linear) solutions. The basic GLM is an equation that looks similar to

the regression equation, except that it is more general. Each term in a basic GLM

equation can represent a set of variables:

Y � b0 � bx � e

where Y � a set of outcome variables

x � a set of independent and control variables

b � a set of coefficients, one for each x
b0 � a set of intercepts (values for each y when each x � 0)

e � error

This model allows tremendous diversity, including multiple dependent variables,

multiple independent variables that are nominal or continuous, between-group and

within-group comparisons, and a host of other possibilities that are too complex to

explain. For example, it allows analysts to include fixed effects versus random effects

(which we do not explain here), to analyze data from balanced and unbalanced designs

(designs in which groups being compared are of different sizes), and to use different

mathematic options for calculating sums of squares. We mention these features prima-

rily because software for running the types of analyses discussed in this chapter require

analysts to specify which options are to be used. In this chapter, we focus on fixed ef-

fects models and Type III sum of squares.
A fundamental principle of the least squares estimation approach is that varia-

tion on a dependent variable can be partitioned into different sources of variation.

The statistical procedures use a whole model approach in partitioning variance. In

complex designs, however, different models are often advantageous. The models dif-

fer in how variance is partitioned—i.e., in the calculation of the sums of squares—

although this topic is too complex for elaboration. There are four commonly used

types of sums of squares, all of which are options within SPSS and other statistical

software. In SPSS, Type III is the default. The Type III sum of squares is calculated

by comparing the full model to the full model without the variable of interest. Although

computations are different, all models involve the same overall hypothesis-testing strat-

egy: Variation attributable to an independent variable is tested against an appropriate

error term.

TIP: SPSS and other software offer a wealth of options within their GLM
programs. The GLM procedure is not, however, available in the Student
Version of SPSS. Moreover, not all SPSS systems carry GLM Multivariate
and Repeated Measures options that are described in this chapter.

ANALYSIS OF COVARIANCE

Researchers use analysis of covariance (ANCOVA) to make comparisons between

two or more group means, after statistically removing the effect of one or more vari-

ables on the dependent variable. The central question for ANCOVA is the same as for

ANOVA: Are mean differences between groups likely to be true population differences,

or are observed mean differences in a sample likely to have occurred by chance?

Analysis of Covariance, Multivariate ANOVA, and Related Multivariate Analyses
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Basic Concepts for ANCOVA

Conceptually, it is useful to think of ANCOVA as a combination of multiple regression

and ANOVA. In the first stage of the analysis, the effects of confounding variables

(called covariates in the context of ANCOVA) are removed from further consideration,

similar to the first step in a hierarchical regression. In the next stage, variability in the

dependent variable that remains to be explained is analyzed as in ANOVA. That

is, the group means are compared after they have been statistically adjusted for the

effect of the covariates. Because error variance is reduced, ANCOVA permits a more

sensitive test of group differences than is achieved with ANOVA.

Figure 1, which shows a visual representation of ANCOVA which is similar to

the depiction of hierarchical regression. The shaded area of the circle in Step 1 shows

the extent to which the dependent variable Y is correlated with the covariate X*. The

dependent variable is regressed on X*, and the portion of Y’s variability that is account-

ed for by X* is removed from further consideration. In Step 2, the analysis focuses on

the ability of the independent variable X to explain any remaining variability in Y.

The independent variable in ANCOVA is always a nominal-level variable, such as

experimental versus control, male versus female, and so on.

As an example, suppose we wanted to test the effectiveness of an intervention to

improve motor function in nursing home residents. The dependent variable is a mea-

sure of motor performance administered after the intervention, and the independent

variable is group status (i.e., membership in the group that received the intervention or

in a control group that did not). The covariate is motor performance scores prior to the

intervention. Preintervention motor performance scores would likely be highly corre-

lated with postintervention scores: Regardless of the intervention, some people would

have better motor performance than others. In this example, we have controlled indi-

vidual differences in motor function by using preintervention motor performance

scores as the covariate. ANCOVA would be used to examine the effect of the interven-

tion on what remains of the variability in postintervention motor performance scores

after individual differences in motor function are statistically controlled.

X*

Covariate

Y
Dependent

Variable

Step 1:
Effect of Covariate Removed

X
Independent

Variable

Y
Dependent

Variable

Step 2:
Effect of Independent Variable Assessed

FIGURE 1 Venn diagram depicting analysis of covariance.
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TABLE 1 Fictitious Data for ANCOVA Example:
Pretest and Posttest Pain Scores in Three Treatment Groups

Bedrest Group Exercise Group Control Group

Pretest
Pain

Posttest
Pain

Pretest
Pain

Posttest
Pain

Pretest
Pain

Posttest
Pain

95 85 75 60 35 30

80 70 80 45 50 40

60 50 50 30 45 45

45 30 85 70 30 20

55 45 70 55 85 85

50 40 85 65 60 50

75 65 60 35 90 85

80 70 65 40 90 75

40 35 80 60 80 65

95 85 45 10 60 60

Means:
67.50 57.50 69.50 47.00 62.50 55.50

ANOVA AND ANCOVA The total sum of squares for the dependent variable (SST) can

be partitioned into variance attributable to the independent variable (sum of squares

between groups or SSB) and to variance associated with other factors such as individual

differences (sum of squares within or SSW). The F ratio contrasts these two sources of

variation. In ANCOVA, the F ratio contrasts sums of squares that have been adjusted for

the covariate’s relationship with the dependent variable—although variance partitioning

is complex because ANCOVA is not a whole model test within the GLM procedures of

most software packages.

As an example, suppose that we randomly assigned 30 people with lower back

pain to three treatment groups: a bedrest group, an exercise group, and a control

group. Pain is measured both before the treatment (the covariate) and after the treat-

ment (the dependent variable) on a visual analog scale that can range from 0 to 100.

Hypothetical data for this example are shown in Table 1. As the means at the bottom

of this table show, the pretest pain scores (the covariates) for the bedrest, exercise,

and control groups were 67.5, 69.5, and 62.5, respectively. An ANOVA on these

pretest means indicates that the groups were not significantly different at the outset

of the study (F � 0.35 [2, 27], p � .71) and so we can conclude that initial group

differences in pain reflect chance sampling fluctuations.

The posttest means are more variable, ranging from a low of 47.0 for the exercise

group to a high of 57.5 for the bedrest group. The null hypothesis is that these means

are equal, and the research hypothesis is that the three group means differ. An ANOVA

on these data yields an F of 0.74, which has an associated p of .49. On the basis of

ANOVA, we would not be able to infer that either a bedrest or an exercise intervention

had an effect on lower back pain. Yet, ANCOVA could alter these conclusions.

The correlation between pretest and posttest pain is high: r � .90 (p � .001), in-

dicating that 81% of the variation in posttest pain is accounted for by variation in pretest

pain. This strong correlation reflects the fact that people who started out in especially

severe pain tended to end up with high levels of pain, regardless of which group they

were in, while people with less pain initially also tended to have less pain later.
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Analysis of covariance involves examining the effect of the intervention on

what remains in Y’s variability after removing the effect of the covariate (preinter-

vention pain). In this example, the F for the effect of the intervention on posttest pain

scores, after controlling pretest pain, is 20.08. With 2 and 26 df, this F is significant

at p � .001. The conclusion now is that, after controlling for initial pain levels, there

is a statistically significant difference in mean posttest pain levels resulting from

exposure to different treatments.

This example was deliberately contrived to have the ANCOVA results differ

from the ANOVA results—the results typically are less dramatic. Nevertheless, if

you can select good covariates, then ANCOVA usually will result in a more sensitive

test than ordinary ANOVA. The increased sensitivity results from the fact that the

error term, against which treatment effects are compared, is almost always smaller in

ANCOVA.

TIP: ANCOVA can be used with a single independent variable, as in
this example, and can also be used in multifactor designs (e.g., a two-way
ANCOVA).

ADJUSTED MEANS The posttest pain scores for the three groups in our example

reflect not only treatment effects, but also individual differences in pain. It is possi-

ble, and often desirable when reporting the results of ANCOVA, to adjust the group

means. Adjusted means allow researchers to portray net effects—i.e., group differ-

ences on the dependent variable net of the effect of the covariate.

Adjusted means are produced in many statistical packages, including SPSS. In

our example, the original means for posttest pain scores were 57.5, 47.0, and 55.5 for

the bedrest, exercise, and control groups, respectively. After adjusting for pretest

pain scores, the respective posttest means were 56.5, 43.9, and 59.6.

ANCOVA tests the null hypothesis that the adjusted means for the groups

being compared are equal. In this example, an inspection of the adjusted means clar-

ifies why the ANCOVA resulted in statistically significant group differences, while

the ANOVA did not. The original unadjusted group means ranged from 47.0 to 57.5,

a spread of 10.5 points. The range for the adjusted means is from 43.9 to 59.6, a

spread of 15.7 points. In essence, the ANCOVA takes into consideration how much

the groups changed from pretest to posttest. Table 1 indicates that the mean

pretest–posttest changes in pain scores ranged from a low of 7.0 points for the con-

trol group, to a high of 22.5 points for the exercise group.

Reporting adjusted means in reports can communicate important information to

readers, but adjusted means should be interpreted with caution because they rarely cor-

respond to an actual situation in the real world. Adjusted means are the means that would

have occurred if all participants had the same scores on the covariate. This would not

occur in reality—yet, adjusted means are often a good way to highlight treatment effects.

MULTIPLE COMPARISONS AMONG ADJUSTED MEANS When ANCOVA results

in a significant F test, as in this example, the researcher can reject the null hypothesis

that the adjusted group means are equal. However, as in ANOVA, further analysis is

needed to determine which pairs of adjusted group means are significantly different

from one another if there are three or more groups.

Post hoc tests protect against the heightened risk of a Type I error that can

occur when multiple pairwise comparisons are run. In ANOVA, several alternative

post hoc tests can be used. Fewer post hoc tests for adjusted group means are

281



Analysis of Covariance, Multivariate ANOVA, and Related Multivariate Analyses

typically available, however. In fact, within SPSS, when covariates are named, the

“pushbutton” for post hoc tests within the GLM program cannot be selected. Yet it is

still possible to pinpoint group differences. We will show the relevant output in a sub-

sequent section. Suffice it to say here that, in our example, the post hoc comparisons

revealed that adjusted mean posttest pain scores for the exercise group were signifi-

cantly different from those in the other two groups, but that other group comparisons

were nonsignificant.

TIP: As in ANOVA, group comparisons can be planned in advance, in
which case the omnibus F test could be avoided. With planned compar-
isons, researchers establish explicit contrasts in which they are interested;
protection against an inflated risk of a Type I error is achieved by running
a small set of orthogonal contrasts.

SELECTION OF COVARIATES Covariates are usually continuous interval- or ratio-

level variables. Sometimes, however, researchers want to statistically control nominal-

level variables. This can be achieved by using dichotomous variables (e.g., married

versus not married) as separate independent variables. (If a nominal dummy-coded

value has a mean close to .50—i.e., close to a 50–50 split, which might occur with the

variable sex—then it can be treated as a continuous variable and included in the model

directly as a covariate.)

ANCOVA can be used to make adjustments for multiple covariates simultane-

ously. It is not usually wise to use more than three or four covariates, however. With

small samples even fewer are recommended. When many covariates are included, it

is inevitable that they will be intercorrelated, which could result in multicollinearity.

Moreover, if covariates are highly correlated, they are redundant in reducing error

variance, and they actually lower the power of the analysis. This is because degrees

of freedom are subtracted from the denominator of the error term, even though error

variance is not subtracted from the numerator.

TIP: When multiple covariates are used, all covariates enter the first step
simultaneously and are treated as a set, as in simultaneous regression.
Within that set, the significance of each covariate is assessed as if it were
the last to enter the equation. Thus, an individual covariate is significant
in the ANCOVA only if its unique contribution to explaining variance in
the dependent variable is significant.

A pretest (baseline) measure of the dependent variable is almost always a

powerful covariate. Important demographic characteristics such as age or sex are

correlated with a broad array of human attributes and may therefore be attractive as

covariates. The stronger the correlation between a covariate and the dependent vari-

able, the better is the covariate. It is usually prudent to consult the research literature

for factors that have been found to influence the dependent variable, and to use these

as covariates.

Care should be taken to choose covariates that can be measured reliably.

Measurement errors can lead to either overadjustments or underadjustments of the

mean, and can contribute to either Type I or Type II errors. For many clinical and

demographic variables (length of stay in hospital, age), measurement error is not typi-

cally a problem, but the same cannot be said for psychosocial variables. Tabachnick and

Fidell (2007) recommend limiting covariates to those whose reliability is .80 or greater.
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FIGURE 2 Homogeneity and heterogeneity of regression.

Assumptions for ANCOVA

As with all other inferential statistics, ANCOVA is based on a number of assumptions,

random selection of subjects, a normally distributed dependent variable, and homo-

geneity of variance among the groups. With a reasonably large sample size—and if the

number of people in the groups is approximately equal—ANCOVA, like ANOVA, is

robust to the violation of the latter two assumptions.

ANCOVA also assumes that the relationship between the dependent variable

and covariates is linear, and relationships between all pairs of covariates are linear.

When this assumption is not true, the power of the test is reduced, and the risk of a

Type II error increases. Scatterplots can be used to evaluate for possible curvilinear-

ity. When a covariate is found to have a curvilinear relationship with the dependent

variable, it is probably best to eliminate it from the analysis, although transforma-

tions of the covariate may be an alternative.

Another assumption is homogeneity of regression across groups: The co-

variate should have the same relationship with the dependent variable in every

group. Homogeneity of regression is illustrated in Figure 2 (A). Here we see that the

slopes of the three groups are equal—that is, the regression lines are parallel. When

there is heterogeneity of regression—illustrated in Figure 2 (B)—there is an interac-

tion between the covariate and the independent (group) variable. Regression lines

are no longer parallel. We illustrate how to test the null hypothesis that the slopes for

the covariate are equal in a subsequent section. If the slopes are significantly differ-

ent, ANCOVA typically should not be used. If you use ANCOVA when this assump-

tion is violated, there is a heightened risk of a Type II error.

Applications of ANCOVA

Strictly speaking, ANCOVA is appropriate primarily in clinical trials in which

participants have been randomly assigned to groups. In a randomized design,

groups are in theory already equivalent across an infinite number of traits. In reality,

however, groups are never perfectly equal, and so ANCOVA can enhance their com-

parability. Moreover, ANCOVA increases the sensitivity of the F test for the effect

of the independent variable by removing the variability attributable to the covariates
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from the error term (the sum of squares within groups). Unless covariates are uncor-

related with the dependent variable, ANCOVA increases the power of the analysis

and can reduce the risk of a Type II error.

Although the use of ANCOVA in nonexperimental and quasiexperimental

studies has been controversial, it is precisely in these situations where ANCOVA has

been used most extensively. When participants are not randomly assigned to groups,

researchers face the possibility that groups being compared are not equivalent, thereby

potentially threatening the study’s internal validity via the threat of bias called

selection.
As an example, suppose we implemented a pain management strategy for

patients in clinic A and compared them to patients in clinic B, who did not receive

the intervention (a nonequivalent control group design). If we compared mean post-

treatment pain scores for the two groups, we could not be sure that any differences

were the result of the intervention, rather than due to preexisting differences in pain

levels, because patients were not randomized to treatments. By using preintervention

pain scores as a covariate, however, the two groups would essentially be equated on

initial levels of pain. Differences between the two groups on the covariate (initial

pain level) are removed so that, presumably, remaining differences can be attributed

to the effect of the intervention. ANCOVA can thus be viewed as a form of “what if ”

analysis—what would postintervention pain differences be if all participants had

equal (statistically equivalent) scores on the covariate?

ANCOVA is also used by some as a statistical matching procedure to enhance

the comparability of groups being compared in observational (nonexperimental)

studies, especially case-control studies. For example, if the stress levels of recently

widowed and recently divorced persons were being compared, we would want to

take steps to make the two groups comparable with respect to characteristics that

might influence stress (e.g., age, length of marriage, and so on). These characteris-

tics could be statistically controlled through ANCOVA.

The use of ANCOVA in nonrandomized studies is sometimes criticized because

of misinterpretations of the results—particularly with regard to causal inferences.

When people are randomly assigned to treatment groups, statistically significant group

differences usually justify an inference of causality: The treatment variable (X) is pre-

sumed to have caused differences in the dependent variable (Y). ANCOVA allows a

more sensitive test of real group differences—and therefore real intervention effects—

than ANOVA. When participants are not randomly assigned to groups, however, even

the use of ANCOVA does not usually justify causal inferences. The researcher can

only conclude that the groups were different after covariate adjustments were made. It

is impossible to statistically control all human characteristics, and so group differences

in the dependent variable could be due to group differences on attributes not used as

covariates, rather than being “caused by” the independent variable.

When ANCOVA is used in studies that do not use randomized designs, there is

one more difficulty. ANCOVA adjusts the group means on the dependent variable

such that they reflect the means that would have occurred if all subjects had the same

values on the covariates. This “if ” might be a totally unrealistic condition, however.

For example, in comparing stress levels in divorced and widowed persons, suppose

we had a measure of marital satisfaction 1 year prior to the divorce or death of

spouse. We could control marital satisfaction statistically, but in some sense this is

not a meaningful thing to do: Differences in marital satisfaction may be fundamental

to the process by which the divorced people are no longer married. Great care must

be taken, then, in interpreting ANCOVA results in nonrandomized studies.
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Special Issues in ANCOVA

This section briefly covers a few additional issues relating to ANCOVA that deserve

mention.

THE MAGNITUDE OF THE RELATIONSHIP Researchers and consumers of

researchers are increasingly interested in learning the magnitude of effects of an

independent variable on a dependent variables, and effect size can also be estimated

in an ANCOVA context. Eta-squared, discussed as an effect size index for ANOVA,

can be adjusted for the covariate, in which cases the index is a partial eta-squared.
Essentially this adjusted eta2 contrasts the sum of squares due to the independent

variable after removing the effect of the covariate against the sum of squares for the

independent variable plus error—both with covariate adjustments.

Although we do not show full computations (computer output will be presented

later), the adjusted value of eta2 in our example of posttest pain scores is 1343.6 �
2213.5 � .61. In this contrived example, 61% of the variance in the adjusted posttest

pain scores is associated with the independent (treatment) variable. Said another

way, 61% of the variance remaining in posttest pain scores, after removing variance

accounted for by pretest pain scores, is attributable to the treatment variable. In a real

study, the value of adjusted eta2 would typically be lower.

POWER AND ANCOVA In general, when ANCOVA is used appropriately with

carefully selected covariates, the analysis of group differences is more powerful than

with ANOVA because error variance is reduced. The degree of increased power is a

function of how much error variance is removed—i.e., how correlated the covariates

are with the dependent variable. In our example, we calculated the adjusted eta2 to be

.61, but the value of unadjusted eta2 is only .05.

Power analysis for ANCOVA can be used to estimate required sample size

before the study begins, using adjusted eta2 as the estimated effect size. The proce-

dures and table for ANOVA are appropriate for ANCOVA, substituting the adjusted

eta2 for eta2.

In the example used in this chapter, the value of adjusted eta2 was .61. If the data

for our contrived example were from a pilot study, we could use this effect size to esti-

mate sample size needs for a full-blown test of the two treatments, using the power

analysis information. Because our adjusted eta2 in this example is so large, we would

estimate that we needed only three participants per group, using standard criteria for

power and α. In most studies, the value of eta2 is less than .14, the value designated as

a “large” effect in Cohen’s guidelines.

TIP: It is also possible to compute a partial eta2 for contrasts between
groups—for example, to compute the effect size contrasting, say, the
bedrest group against the other two groups. SPSS has an option for such
computations.

PRECISION AND CONFIDENCE INTERVALS Similar to ANOVA, confidence inter-

vals (CIs) can be built around individual adjusted means, as we will see when we look

at SPSS output. CIs, showing the precision of the statistics as estimates of population

parameters, can also be constructed around differences in adjusted group means.

MULTICOLLINEARITY As with multiple regression, researchers must be careful not

to include in the ANCOVA analyses independent variables and covariates that are
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too highly intercorrelated. The possibility of multicollinearity is most likely to occur

when there are multiple covariates. Some software packages automatically protect

against multicollinearity by computing the tolerance, as we described for multiple

regression. Other packages (such as SPSS) do not. If there is a potential risk of

multicollinearity, one option is to use a multiple regression program to examine

tolerance levels prior to running the ANCOVA.

Alternatives to ANCOVA

Researchers sometimes consider alternatives to ANCOVA for analyzing their data.

Alternatives are most readily available if the covariate and the dependent variable are

measures of the same attribute, as in the example we have used in this chapter. When

this is the case, one option is to use a repeated measures ANOVA with both a within-

subjects factor (time of measurement) and a between-subjects factor (treatment

group)—an approach we discuss later in this chapter. This option may be less attrac-

tive than ANCOVA, however, because the effect of the independent variable is eval-

uated as the interaction between the independent variable and the pretest versus

posttest scores, rather than as a main effect.

Another alternative is to compute difference scores between the pretest and

posttest measures, and to then treat these differences—called change scores—as the

dependent variable in ANOVA. For example, using the data in Table 1, the change

score for the first person in group A would be 10 (95 � 85). One of the main prob-

lems with change scores (as well as with RM-ANOVA) is that there are often ceiling
effects or floor effects than constrain the magnitude of change. That is, the amount of

change may be artificially small simply because pretest scores are at the upper or lower

end of the scale, leaving little room for changes resulting from the treatment. To illus-

trate with our previous example, the pretest pain score of the first person in group A

(95) could not have increased by more than 5 points, no matter how much more pain

was felt at posttest. Another problem with change scores is that unreliability is com-

pounded: Change scores tend to be less reliable that either the pretest or the posttest

scores. ANCOVA is generally preferable to ANOVA with change scores.

TIP: The alternative analyses ask slightly different questions. In
ANCOVA, the question (using this chapter’s example) is: Do treatment
groups differ in levels of pain, after adjusting for pretreatment differences
in pain? With change-score analysis and RM-ANOVA, the question is: Are
changes in pain levels associated with participation or nonparticipation in
a bedrest or exercise intervention?

An option that does not require the covariate to be measured on the same scale

as the dependent variable is blocking. This essentially involves using the covariate as

another independent variable in a multifactor design, with ANOVA used to perform

the statistical tests. If the covariate is a continuous variable, it must first be converted

to a categorical variable (e.g., continuous pretest pain scores could be categorized as

low, medium, and high based on some cutoff points). An advantage of this approach

is that it can be used when the covariate’s relationship with the dependent variable is

curvilinear. Moreover, if there would have been heterogeneity of regression between

the original covariate and the dependent variable in ANCOVA, this can be detected in

multifactor ANOVA as an interaction between the blocked covariate and the

independent variable. When ANCOVA’s assumptions are met, however, ANCOVA is
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Tests of Between-Subjects Effects
Dependent Variable: Posttest Pain Score

a. R Squared � .934 (Adjusted R Squared � .921)

Source
Type III Sum
of Squares df

Mean
Square F Sig.

Corrected Model 11135.400a 5 2227.080 68.414 .000

Intercept 518.096 1 518.096 15.916 .001

Prepain 9629.884 1 9629.884 295.824 .000

Group 299.311 2 149.655 4.597 .020

Group * Prepain 88.618 2 44.309 1.361 .275

Error 781.267 24 32.553

Total 97250.000 30

Corrected Total 11916.667 29

FIGURE 3 SPSS printout for test of homogeneity of regression in ANCOVA.

usually preferable to blocking because converting the covariate to a categorical

blocking variable results in lost information and a smaller reduction of the error term.

Example of ANCOVA:

Peterson, Bergstrom, Samuelsson, Asberg, and Nygren (2008) analyzed data from a

randomized controlled trial that tested an intervention to reduce stress and burnout

among healthcare workers. Group differences on outcomes measured 12 months

after the intervention were compared for the intervention and control group using

ANCOVA. Baseline scores on the outcome variables were used as covariates.

Statistically significant intervention effects were found for several outcomes (e.g.,

general health, perceived demands at work).

The Computer and ANCOVA

In this section we describe some SPSS printouts for analysis of covariance, using the

data on pain scores presented in Table 1. The output is complex, and so we summa-

rize only key features that are important to interpreting ANCOVA results.

We begin by testing the assumption of homogeneity of regression across

groups, which is accomplished by including an interaction term in the analysis. That

is, we instruct the computer to include a variable that represents the multiplicative

interaction between the covariate (Prepain, pretest pain scores) and the treatment

group variable (Group) as a “predictor” of posttest pain scores. If the interaction

term is statistically significant, the null hypothesis of homogeneity of regression is

rejected, and ANCOVA should not be used.

Figure 3 shows the relevant output for this test. (This figure was created in

SPSS using Analyze ➜ General Linear Model ➜ Univariate with a custom model.)

The focus here is on the row that is labeled Group * Prepain in the first column

under the heading “Source,” i.e., source of variation. In this row, which we have

shaded, we see that the F statistic for the interaction terms is 1.361. With 2 and 29 df,
this F is not significant, p � .275. We can therefore proceed with our analysis.

Figure 4 presents several panels of the SPSS printout for the ANCOVA, using the

GLM univariate program and a full factorial model. Panel A shows the unadjusted
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Source
Type III Sum
of Squares df

Mean 
Square F Sig.

Partial Eta-
Squared

Corrected Model 11046.782a 3 3682.261 110.059 .000 .927

Intercept 430.072 1 430.072 12.854 .001 .331

Prepain 10425.115 1 10425.115 311.596 .000 .923

Group 1343.608 2 671.804 20.080 .000 .607

Error 869.885 26 33.457

Total 97250.000 30

Corrected Total 11916.667 29

Experimental 
Group Mean Std. Deviation N

Bedrest Group 57.50 20.173 10

Exercise Group 47.00 18.589 10

Control Group 55.50 22.417 10

Total 53.33 20.271 30

A Descriptive Statistics
Dependent Variable: Posttest Pain Score

B Levene’s Test of Equality of Error Variancesa

Dependent Variable: Posttest Pain Score

F df1 df2 Sig.

6.527 2 27 .005

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

a. Design: Intercept � prepain � group

C Tests of Between-Subjects Effects
Dependent Variable: Posttest Pain Score

a. R Squared � .927 (Adjusted R Squared � .919)

D Parameter Estimates
Dependent Variable: Posttest Pain Score

Parameter B
Std.
Error t Sig.

95% Confidence Interval

Partial Eta-
Squared

Lower 
Bound

Upper 
Bound

Intercept �8.006 4.036 �1.984 .058 �16.302 .290 .131

Prepain 1.016 .058 17.652 .000 .898 1.134 .923

[Group � 1] �3.080 2.603 �1.184 .247 �8.430 2.270 .051

[Group � 2] �15.613 2.618 �5.964 .000 �20.994 �10.231 .578

[Group � 3] 0a . . . . . .

a. This parameter is set to zero because it is redundant.

FIGURE 4 SPSS printout for ANCOVA.
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(I)
Experimental
Group

(J) 
Experimental

Group

Mean
Difference 

(I � J)
Std. 
Error Sig.a

95% CI for
Differencea

Lower
Bound

Upper
Bound

Bedrest Group Exercise Group 12.532* 2.589 .000 5.906 19.158

Control Group �3.080 2.603 .247 �9.741 3.580

Exercise Group Bedrest Group �12.532* 2.589 .000 �19.158 �5.906

Control Group �15.613* 2.618 .000 �22.312 �8.913

Control Group Bedrest Group 3.080 2.603 .247 �3.580 9.741

Exercise Group 15.613* 2.618 .000 8.913 22.312

Experimental
Group Mean

Std.
Error

95% CI

Lower
Bound

Upper
Bound

Bedrest Group 56.484a 1.830 52.722 60.246

Exercise Group 43.952a 1.837 40.175 47.728

Control Group 59.564a 1.844 55.775 63.354

Estimated Marginal Means
Experimental Group

E Estimates
Dependent Variable: Posttest Pain Score

a. Covariates appearing in the model are evaluated at the following 
values: Pretest pain score � 66.50.

F Pairwise Comparisons
Dependent Variable: Posttest Pain Score

Based on estimated marginal means

*. The mean difference is significant at the .05 level.
a Adjustment for multiple comparisons: Bonferroni.

means (and SDs) for the three treatment groups—the same means shown at the bottom

of Table 1. Panel B presents the results of the test of the assumption of homogeneity of

variance using the Levene test. In this example, the probability for this test was p � .005,

indicating significant group differences in the variances. However, an alternative test,

described in the “Tip” below, suggests homogeneity is acceptable.

TIP: It has been argued (e.g., Field, 2005) that Levene’s test is not
necessarily the best way to evaluate whether variances are unequal enough
to be problematic for ANOVA and ANCOVA. An alternative test is the
variance ratio, which is the ratio of the largest group variance (the SD
squared) divided by the smallest group variance. If the ratio is less than 2,
heterogeneity of variance is not considered to be problematic. In our
example, the variance for the control group (502.66) divided by the variance
for the Exercise group (345.60) is only 1.45, and so we can proceed.

Analysis of Covariance, Multivariate ANOVA, and Related Multivariate Analyses

FIGURE 4 Continued
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Panel C summarizes the results of the ANCOVA analysis. The sources of

interest—the shaded rows in this panel—are Prepain, the covariate, and Group,

the independent variable. This output indicates that the F for the covariate is

311.596 (df � 1, 26), which is significant at p � .001. This F was computed by

dividing the mean square for Prepain (10425.115) by the mean square for error

(33.457). This result indicates that pretest pain scores were strongly related to

posttest pain scores. With pretest pain scores statistically controlled, the F for the

treatment group variable is 20.080, which reflects the mean square for Group
(671.804) divided by the mean square for error (33.457). With 2 and 26 df, this F is

highly significant, p � .001. We can reject the null hypothesis that the adjusted

group means on posttest pain scores were equal. The far-right column of this panel

indicates that the value of eta-squared, controlling for the covariate, is .607. At the

bottom of this panel we see that the overall R2 for all components in this model

was .929, with an adjusted value of .919.

Panel D, Parameter Estimates, shows output similar to that for multiple

regression—b weights, standard errors, t statistics, and significant levels for each

component in the model. For this part of the analysis, SPSS created contrasts

among the groups, and used Group 3 (the control group) as the reference group.

(In SPSS, the default is to use the last group as the reference group.) The output in-

dicates that Group 1 (bedrest) is not significantly different from the other two

groups (t � �1.84, p � .247), but Group 2 (exercise) is significantly different from the

other two (t � �5.964, p � .001). CIs around the b weight are also shown. In the

case of group 1, the 95% CI around b includes the value of 0.00 (�8.43 to �2.27),

showing that it is not significant. The final column shows that the partial eta-

squared summarizing the net effect size for the exercise condition (Group 2), when

contrasted to the other two and controlling pretest pain scores, was .578.

TIP: Note that parameters in GLM cannot be interpreted as in ordinary
least squares. That is to say, a unit change in an independent variable X
does not correspond to a bX change in the dependent variable.

Panel E presents adjusted means—mean posttest pain statistically adjusted for

pretest pain scores for the three groups—and the 95% CI around them. For example,

the 95% CI around the adjusted mean posttest pain score for the bedrest group

(56.484) is 52.722 to 60.246. This panel also indicates that the exercise group is sig-

nificantly different than the other two: The upper bound of the 95% CI around the

exercise group’s adjusted mean (47.728) is lower than the lower bound for either of

the other groups (52.722, bedrest and 55.775, controls). In other words, we can be 95%

confident that the means are different.

Panel F shows Pairwise Comparisons using the Bonferroni multiple comparison

procedure, which adjusts for the inflated risk of a Type I error with multiple compar-

isons. This panel confirms that adjusted mean for the exercise group was significantly

different from those in the other groups, at p � .001 (shaded rows). Adjusted means for

the bedrest and control groups did not differ significantly from each other.

TIP: There are only two options in SPSS for post hoc comparisons of
adjusted means—the Bonferroni test or the Sidak test. The Sidak procedure
is less conservative than the Bonferroni, which means it is somewhat more
susceptible to Type I errors, but less susceptible to Type II errors.
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MULTIVARIATE ANALYSIS OF VARIANCE
AND COVARIANCE

Multivariate analysis of variance (MANOVA) is an extension of ANOVA that is

used to test differences between two or more groups on two or more dependent vari-

ables simultaneously. For example, suppose an intervention with cancer patients is

designed to both reduce stress and increase hopefulness. Or suppose a treatment for

insomniacs is evaluated for its effect on several sleep measures (e.g., minutes of

sleep, intrasleep awakenings, etc.). In such situations, MANOVA is likely to be

appropriate. It is beyond the scope of this book to explain MANOVA in detail

because of its extreme complexity, but major features are described.

Basic Concepts for MANOVA

The F statistic in ANOVA tests whether any group differences on the mean of one

dependent variable are likely to have occurred by chance. In MANOVA, statistical

tests evaluate whether mean group differences on multiple dependent variables are

likely to have resulted by chance. MANOVA involves the creation of a new dependent

variable that is a linear combination of the original dependent variables. Analysis of

variance is performed on the composite dependent variable.

Like ANOVA, MANOVA involves partitioning variance into various compo-

nents. For the most basic MANOVA situation—a one-way MANOVA—variance in

the composite dependent variable is partitioned into variance attributable to differ-

ences between groups, and error variance, i.e., differences within groups. In

ANOVA, the partitioned components are computed by summing the squared differ-

ences between individual scores and various means. By contrast, MANOVA involves

a matrix of scores on the dependent variables, and complex matrix operations are re-

quired to partition variance in the composite dependent variable. These matrix oper-

ations are described in such texts as Tabachnick and Fidell (2007).

Typically, MANOVA is used in the context of experimental designs in which

the investigator has randomly assigned participants to different treatment groups.

Although MANOVA can also be used to analyze nonexperimental data, the interpre-

tations of results are necessarily different. In practice, researchers analyzing non-

experimental data are more likely to use multiple regression than MANOVA.

TIP: The dependent variables for MANOVA and MANCOVA should be
measured on a scale that is ratio-level or interval-level. Covariates for
MANCOVA are typically continuous variables, but dummy-coded
dichotomous variables can also be included as described in the section on
ANCOVA.

THE USES OF MANOVA When comparing group means on several dependent vari-

ables, most researchers perform multiple ANOVAs rather than MANOVA—yet, it is

usually inappropriate to perform a series of ANOVAs with the same people. The

problem with multiple ANOVAs is that the risk of a Type I error is inflated when the

dependent variables are correlated, as they almost always are. This is a similar prob-

lem to using multiple t tests rather than ANOVA when there are more than two

groups. MANOVA takes correlations among dependent variables into account when

it creates the composite dependent variable, and therefore the risk of a Type I error is

maintained at the desired level (i.e., at .05 or lower).
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FIGURE 5 Composite of two dependent variables for three groups.

Another reason for using MANOVA is that it may reveal group differences that

were nonsignificant with individual ANOVAs. Figure 5 illustrates how this might

occur. In this figure, the axes of the coordinates represent two dependent variables,

Y1 and Y2. Frequency distributions for three groups being compared (A, B, and C) are

portrayed directly on the axes. These distributions indicate considerable overlap

among the three groups on the two dependent variables when they are considered

separately; the three group means on Y1 and Y2 are fairly close in value. Yet the

ellipses in this figure, which represent the composite of the two dependent variables,

make group differences stand out more clearly. Sometimes, then, MANOVA can be

more powerful than a series of ANOVAs.

MANOVA may, however, be less powerful than ANOVA. Given the same

effect size, significance criterion, and desired power, it usually requires a larger sample

to reject the null hypothesis for MANOVA than for ANOVA. Moreover, MANOVA

involves even more assumptions than ANOVA and may lead to ambiguities when

interpreting the effects of the independent variable on any individual dependent vari-

able. Nevertheless, if the research involves more than one dependent variable,

MANOVA is often appropriate.

Tabachnick and Fidell (2007) note that MANOVA works best (from a statisti-

cal point of view) when the dependent variables are highly negatively correlated or

moderately positively correlated. If the dependent variables are uncorrelated, or very

highly positively correlated, MANOVA can be viewed as “wasteful” (Tabachnick &

Fidell, 2007, p. 268). Researchers who opt to use multiple ANOVAs rather than a

MANOVA should consider an adjustment to their alpha level to protect against the

inflated risk of a Type I error, as discussed in the next section.

TIP: Theoretically, there is no limit to the number of dependent variables
that can be used in MANOVA. As the number increases, however,
interpretation becomes more difficult, the likelihood of error based on
complex interactions increases, and typically there is a loss of power.
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TABLE 2 Fictitious Data for MANOVA Example: Scores on Two Posttest
Dependent Variables in Three Treatment Groups

Bedrest Group Exercise Group Control Group

Pain Medications Pain Medications Pain Medications

85 12 60 9 30 2
70 7 45 4 40 5
50 4 30 0 45 4
30 2 70 6 20 1
45 8 55 4 85 10
40 5 65 8 50 6
65 7 35 5 85 14
70 9 40 3 75 8
35 2 60 8 65 6
85 11 10 1 60 4

Means:

57.50 6.7 47.00 4.8 55.50 6.0

STATISTICAL TESTS FOR MANOVA To illustrate MANOVA, suppose that in our

fictitious experiment to evaluate the effectiveness of bedrest versus exercise versus

no intervention in reducing lower back pain, we had two dependent variables: post-

treatment pain scores and number of pain medications taken in the 5 days following

treatment. For the moment, we omit from the analysis the pretreatment pain scores.

Data for this example are presented in Table 2.

The most basic research question in MANOVA is whether the mean group dif-

ferences on the dependent variables are true population differences or whether

sample mean differences likely occurred by chance. In ANOVA, an F statistic is

computed, but in MANOVA there are four alternative statistics: Pillai’s trace crite-
rion, Wilks’ lambda (�), Hotelling’s trace criterion, and Roy’s largest root
criterion (sometimes called Roy’s greatest characteristic root or gcr). An F test in

ANOVA is the ratio of the mean squares for the treatment to the mean squares for

error. In MANOVA, there is no longer a single number to represent the two sums of

squares, but rather there are several matrices with sums of squares and cross prod-

ucts. The matrices must be combined into a test statistic, and the four statistics just

described use different criteria for creating the test statistic. When only two groups

are being compared in a one-way MANOVA, the four statistics are identical. When

there are three or more groups, the values of these statistics may differ, but the con-

clusions (i.e., whether to reject or accept the null hypothesis) are usually—although

not always—the same.

For the data shown in Table 2, the MANOVA statistics for testing group

differences are as follows: Pillai’s trace criterion � .06; Wilks’ lambda � .94;

Hotelling’s trace criterion � .07; and Roy’s largest root � .06. Perhaps the most

widely-reported of these test statistics is Wilks’ lambda, especially when there are

three or more groups. This statistic represents the pooled ratio of error variance in

the composite dependent variable to error variance plus treatment variance. This may

sound similar to the R2 statistic—in fact, Wilks’ lambda may be defined as follows:

� � 1 � R2
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In other words, Wilks’ lambda is a measure of the proportion of variance in the

composite dependent variable that is not accounted for by the independent variable.

Thus, one reason for the popularity of Wilks’ lambda as the test statistic in MANOVA

is that it provides a direct measure of the strength of the relationship between the

independent variable and the dependent variables, taken together. In our example,

the proportion of variance accounted for by the treatment variable is .06, i.e., 

(1 � .94).

Pillai’s criterion, however, is the most robust of the four statistics, meaning

that it yields results that are most likely to be correct even when MANOVA assump-

tions are violated. When the sample is small, when there are unequal ns in the

groups, or when basic assumptions (described below) are known to be violated,

Pillai’s criterion is the preferred test statistic.

Tables of the exact distributions for the four MANOVA test statistics can be

found in advanced textbooks, but the more usual procedure is to transform the statis-

tics to an approximate F distribution. For the Wilks’ lambda statistic in our example,

the F statistic is 0.44 (4, 52), p � .78. Based on this MANOVA analysis, we would

conclude that the three groups do not differ significantly in terms of posttreatment

pain scores or number of pain medications. We would have reached the same conclu-

sion regardless of which of the four test statistics had been used.

If we had found statistically different group means for the overall MANOVA

test, we would naturally want to identify which dependent variables had significant

group differences. This is not a straightforward task if the dependent variables are

correlated. One approach is to examine univariate ANOVA results for each dependent

variable. Dependent variables can be rank ordered, in terms of their contribution to

a significant MANOVA statistic, by the magnitude of significant univariate F sta-

tistics. When this approach is used, however, more stringent alpha levels should be

used in determining which dependent variables are significant, using a Bonferroni-

type adjustment. The formula for estimating the risk of a Type I error when evaluat-

ing multiple dependent variables via ANOVA is as follows:

α � 1 � (1 � α1)(1 � α2) . . . (1 � αj)

where α � overall risk of Type I error

α1 . . . α j � risk of Type I error for Y1 to Yj
j � number of dependent variables

Thus, if our significance criterion for the univariate F tests were .05, the overall risk

of committing a Type I error in our example of two separate univariate ANOVAs

would be as follows:

α � 1 � (1 � .05)(1 � .05) � .098

With two dependent variables, there would be about a one in ten chance of

committing a Type I error if we used .05 as the significance criterion for individual

ANOVA tests. If we wanted our overall risk of a Type I error to be kept to the 5%

level, we would have to conclude that a dependent variable was nonsignificant if the

p value for the univariate ANOVA F test exceeded .025 (.05 � .05).

Another alternative for evaluating dependent variables in the context of signif-

icant overall MANOVA results is a stepdown analysis. This procedure is compara-

ble to using hierarchical multiple regression to test the importance of independent

variables. In the first step, the highest-priority dependent variable (as specified by

the researcher) is tested via ordinary ANOVA. Remaining dependent variables are
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“stepped in” in a series of ANCOVAs that use previously entered dependent vari-

ables as covariates to see whether the new dependent variable adds anything to the

combination of dependent variables already tested.

MANCOVA and Other Related Procedures

Like ANOVA, MANOVA can be extended in various ways to accommodate different

research designs. For example, multifactor MANOVAs can also be performed. A

two-way MANOVA would be used to test hypotheses about multiple dependent vari-

ables when there are two independent variables (e.g., the effect of three treatment

conditions on posttreatment pain scores and pain medication usage, separately for

those who have or have not had back surgery). In this case, the analysis provides

tests of two main effects (treatment and surgical history) and an interaction effect on

the composite dependent variable.

Another important extension of MANOVA is multivariate analysis of covari-
ance (MANCOVA). MANCOVA involves adjustments to the composite dependent

variable prior to assessing the effects of the independent variable. Just as ANCOVA

generally adds power to the statistical test in comparison with ANOVA, so too does

MANCOVA generally make it less likely that a Type II error will be committed in

comparison with MANOVA. The power increases as the correlation between the

covariates and the dependent variables increases.

In the example we used to illustrate MANOVA, we could use MANCOVA to

first statistically remove the effect of pretreatment pain scores, and then examine the

effect of the treatment variable on both posttreatment pain scores and medications. In

fact, when we do this, the conclusions are different than when MANOVA is used. It

may be recalled that without pretreatment pain scores controlled, the value of Wilks’

lambda for the effect of the treatment variable on the composite dependent variable

was .94—only 6% of the variance explained. After removing the effect of initial pain

scores, the treatment group variable accounts for a full 62% of the variance in the

composite dependent variable (i.e., � � .38). This effect is significant beyond the .001

level. We examine SPSS output for this analysis in a subsequent section.

Assumptions for MANOVA and MANCOVA

Significance tests for MANOVA and MANCOVA assume random sampling from the

population and a multivariate normal distribution. MANOVA is fairly robust to the nor-

mality assumption when there are at least 20 cases in each cell of the design, but if any

dependent variable is known to be severely skewed, a transformation should be used.

The multivariate analog of the assumption of homogeneous variances for indi-

vidual dependent variables is homogeneity of the variance–covariance matrices1. If

sample sizes are equal in the groups being compared, MANOVA is robust to violations

of this assumption. With unequal sample sizes, the Box M test should be used to assess

homogeneity. This test tends to be overly sensitive, and so Tabachnick and Fidell

(2007) recommend that an alpha of .001 be used as the criterion for concluding that the

MANOVA may not be adequately robust. They also recommend using Pillai’s criterion

as the statistical test when the significance of the Box M test exceeds .001.

1A variance–covariance matrix is a square matrix with the variances of the variables on the diagonal and

the covariances of pairs of variables off the diagonal. The covariance of two variables is the sum of the cross

products of each variable’s deviation scores, divided by degrees of freedom. The covariance can be thought

of as an unstandardized correlation coefficient. When each covariance is divided by the standard devia-

tions of the two variables, the result is the correlation between the two.
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Linearity is also assumed—linearity between all pairs of dependent variables,

all pairs of covariates in MANCOVA, and all covariate-dependent variable combina-

tions. If there is reason to assume a curvilinear relationship, scatterplots of pairs of

variables should be examined. Departures from linearity can reduce the power of the

statistical tests.

In both stepdown analysis and MANCOVA, homogeneity of regression is

assumed. If an interaction between a covariate and an independent variable exists,

MANCOVA is not appropriate. An interaction implies that a different covariate

adjustment on the dependent variable is needed in different groups.

Power and Sample Size in MANOVA

When using MANOVA or MANCOVA, there should always be more cases than

dependent variables in every cell of the design. If a cell has more dependent vari-

ables than participants, the cell becomes singular and the homogeneity assumption

becomes untestable. Sample sizes in each cell should, in any event, be reasonably

large to ensure adequate power.

It is possible to do a power analysis for MANOVA and MANCOVA, but this

typically requires specialized software. Some approximate projections of sample size

needs can be made if you can estimate the lowest partial eta2 for your various dependent

variables. In other words, you can base your power analysis on the estimated effect of

your independent variable on the dependent variable with the smallest expected group

difference, using power analysis procedures discussed previously.

Power in MANOVA also depends on the relationships among the dependent

variables. Power is lowered when correlations among the dependent variables are

positive or moderately negative. If you anticipate such a situation, your sample

size estimates should be increased accordingly to minimize the risk of a Type II

error.

TIP: In SPSS, researchers can select an option for all GLM analyses,
such as MANOVA and ANCOVA, that will indicate “observed power”
(i.e., post hoc power) for each component of the model. This option
yields an estimate of the power of the analysis to detect the obtained
effect, given the sample size and a significance criterion, the default for
which is .05.

Computer Example of MANCOVA

Computer programs for MANOVA and MANCOVA typically offer dozens of options

for statistical information and displays. Figure 6 presents selected minimal SPSS

output for a MANCOVA, involving the analysis of data presented in Table 2, with

the pretreatment pain scores from Table 1 as the covariate. In this analysis, which

was run in SPSS using Analyze ➜ General Linear Model ➜ Multivariate, Prepain is

the covariate and Group is the independent variable. We comment on major features

of this printout in this section.

TIP: In SPSS, the term “multivariate” is used only when there are
multiple dependent variables. Thus, ANCOVA is run within the GLM
Univariate program, while MANOVA and MANCOVA are run with the
Multivariate program.
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Panel A presents results of the test of the assumption regarding the homogene-

ity of the variance–covariance matrices. The Box M statistic is 1.010, which is trans-

formed to an F value (.150) that is nonsignificant (p � .989). We can conclude that

the assumption of homogeneity has not been violated.

Panel B (Multivariate tests) presents a particularly important table for our

analysis. This panel shows the four MANOVA statistics for the intercept, the covari-

ate Prepain, and the independent treatment group variable Group. All effects are sta-

tistically significant at p � .001 or lower, regardless of which of the four statistical

tests for multivariate effects is used. Of particular importance are the rows for

Group. With pretest pain scores controlled, group differences on the composite

dependent variable are statistically significant. For example, we see that the value of

the Wilks’ lambda statistic is .379 (i.e., about 62% of the variance explained). Using

this test, the partial eta2 for the independent variable, shown in the last column, is

.384. Although we do not show the MANOVA results (the same analysis without the

Effect Value F
Hypothesis

df
Error

df Sig.
Partial Eta-
Squared

Intercept Pillai’s Trace .437 9.690a 2.000 25.000 .001 .437

Wilks’ Lambda .563 9.690a 2.000 25.000 .001 .437

Hotelling’s Trace .775 9.690a 2.000 25.000 .001 .437

Roy’s Largest Root .775 9.690a 2.000 25.000 .001 .437

Prepain Pillai’s Trace .926 155.291a 2.000 25.000 .000 .926

Wilks’ Lambda .074 155.291a 2.000 25.000 .000 .926

Hotelling’s Trace 12.423 155.291a 2.000 25.000 .000 .926

Roy’s Largest Root 12.423 155.291a 2.000 25.000 .000 .926

Group Pillai’s Trace .627 5.941 4.000 52.000 .001 .314

Wilks’ Lambda .379 7.794a 4.000 50.000 .000 .384

Hotelling’s Trace 1.618 9.709 4.000 48.000 .000 .447

Roy’s Largest Root 1.607 20.893b 2.000 26.000 .000 .616

A Box’s Test of Equality of Covariance Matricesa

Box’s M 1.010

F .150

df1 6

df2 18168.923

Sig. .989

Tests the null hypothesis that the observed covariance 
matrices of the dependent variables are equal across groups.
a Design: Intercept � prepain � group

B Multivariate Testsc

a Exact statistic
b The statistic is an upper bound on F that yields a lower bound on the significance level
c Design: Intercept � prepain � group

FIGURE 6 SPSS printout of MANCOVA.
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Source Dependent Variable
Type III Sum
of Squares df

Mean
Square F Sig.

Partial Eta-
Squared

Corrected Model Posttest pain score 11046.782a 3 3682.261 110.059 .000 .927

Number of medications 261.489b 3 87.163 28.090 .000 .764

Intercept Posttest pain score 430.072 1 430.072 12.854 .001 .331

Number of medications 42.649 1 42.649 13.745 .001 .346

Prepain Posttest pain score 10425.115 1 10425.115 311.596 .000 .923

Number of medications 243.023 1 243.023 78.319 .000 .751

Group Posttest pain score 1343.608 2 671.804 20.080 .000 .607

Number of medications 33.258 2 16.629 5.359 .011 .292

Error Posttest pain score 869.885 26 33.457

Number of medications 80.677 26 3.103

Total Posttest pain score 97250.000 30

Number of medications 1363.000 30

Corrected Total Posttest pain score 11916.667 29

Number of medications 342.167 29

C Tests of Between-Subjects Effects

a R Squared � .927 (Adjusted R Squared � .919)
b R Squared � .764 (Adjusted R Squared � .737)

covariate), suffice it to say that all four multivariate tests were nonsignificant for the

Group variable when pretest pain scores were not controlled.

The next panel of SPSS printout presented results of Levene’s test for homo-

geneity of variances, which we do not show in Figure 6 in order to conserve space.

Levene’s test for the dependent variable posttest pain was statistically significant, as

discussed previously, but the test for medications was not significant (p � .761),

indicating that the assumption of homogeneous variances was not violated.

Panel C of Figure 6 (Between Subjects Effects) presents univariate results—

i.e., statistics for each dependent variable separately. This panel essentially summa-

rizes the results of analyses in which each dependent variable is regressed on

Prepain and Group. For example, the footnotes at the bottom shows that R2 for

posttest pain scores regressed on the covariate and independent variable is .927

(adjusted value � .919), while that for the regression of number of medications on

these two variables is .764 (adjusted value � .737). The first row of the table

indicates that, for both dependent variables, the overall models are significant

beyond the .001 level.

Panel C also shows individual ANCOVAs for the two dependent variables, for

the independent variable Group (the shaded rows). Results for the first dependent

variable, posttest pain scores, are identical to the ANCOVA results presented in

Figure 4. For example, the F of 20.080 is the same in both analyses. The ANCOVA for

the second dependent variable, number of medications, has an F � 5.359, which is

significant at p � .011. Thus, these separate univariate tests indicate that Group had a

significant effect on both dependent variables, considered separately, with pretest pain

scores controlled. Remember, however, that with a desired overall α of .05, each uni-

variate F test must have a p value equal to or less than .025, as previously noted. Both

FIGURE 6 Continued
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dependent variables meet this criterion, and thus we can conclude that, after control-

ling for initial levels of pain, the three treatments had different effects on both

posttreatment pain and the use of pain medications. In this example, the stepdown

analysis also resulted in significant F values for both dependent variables (not shown).

The MANCOVA output included several panels that we did not include in

Figure 6. One is an optional table for Marginal Means, i.e., the adjusted group means

on the dependent variables after removing the effect of the covariate (analogous to

panel D of Figure 4). Figure 6 also does not show the panel for Pairwise

Comparisons (analogous to panel E of Figure 4). The pairwise comparisons for num-

ber of medications were similar to those for posttest pain scores: The exercise group

was significantly different from the bedrest and control groups, but the two latter

groups were not significantly different from each other.

TIP: In a MANOVA performed within SPSS, a full range of post hoc tests
is available to pinpoint differences between the means of paired groups
while adjusting for the inflated risk of a Type I error. When there are
covariates in the model, however, only the Bonferroni and Sidak
procedures are available for comparing adjusted means in MANCOVA.

Example of MANCOVA:

Good and Ahn (2008) used MANCOVA to test the effect of a music intervention on

pain among Korean women who had had gynecologic surgery. Women in the treat-

ment group chose between several types of music, while those in the control group

had no music. Pain levels were assessed using two pain measures, a sensory compo-

nent and an affective (distress) component. The two groups were compared on the

two postintervention pain measures using a multivariate model with baseline pain

levels controlled.

REPEATED MEASURES ANOVA FOR MIXED DESIGNS

One-way repeated-measures ANOVA (RM-ANOVA), which is appropriate for with-

in-subject designs in which one group of people is measured at multiple points. In

such situations, the null hypothesis is that the means have not changed over time, or

under different conditions in a crossover design.

Many clinical trials involve randomly assigning participants to different treat-

ment groups such as an experimental and control group, and then collecting data at

multiple points. When there are only two data collection points (e.g., a pretest and a

posttest), ANCOVA is often used to test the null hypothesis that group means are

equal, after removing the effect of pretest scores. When data are collected at three or

more time points, the appropriate analysis usually is a repeated measures ANOVA
for mixed designs. The design is called mixed because there is a within-subjects

time factor, as well as a between-subjects treatment factor. That is, the analysis com-

pares means for the same people over time, as well as means for different people in

the treatment groups. Because there are two factors (time and treatment), there is an

interaction term, and in fact, it is the interaction term that is of primary interest in

clinical trials. When people are randomized to treatment groups, we would expect

their mean values at baseline to be equal—but if the treatment is beneficial, group

means would be different at subsequent points of data collection, thus resulting in a
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time � treatment interaction. The general linear model can be used to analyze data

from such mixed-design studies.

TIP: Because RM-ANOVA is undertaken within the GLM, there is
considerable flexibility. For example, there can be two or more between-
subjects independent variables, covariates, and many different points of
data collection.

Basic Concepts for Mixed-Design RM-ANOVA

To make our discussion more concrete, consider the data in Table 3, which extends our

example of experimental interventions for lower back pain. Suppose we collected prein-

tervention data on pain levels at T1, randomly assigned participants to three groups, ad-

ministered the interventions to the two treatment groups, and then measured pain 1

month (T2) and 2 months (T3) later. A mixed-design RM-ANOVA would be appropri-

ate for analyzing these data. In this situation, the RM-ANOVA addresses the questions

of whether (1) mean pain scores changed significantly over time, regardless of treatment

group; (2) group means were different, regardless of when data were collected; and (3)

mean pain scores for the groups are different conditional upon the timing of the data

collection. With regard to the first question, the mean pain scores at T1, T2, and T3 for

the three groups combined were 66.50, 53.33, and 55.50, respectively—but are these

differences significant? The second question, in the context of this RCT, is of limited in-

terest. But with regard to the third question, there were declines in pain scores over time

in all three groups, but were declines significantly greater in some groups—that is, did

an intervention lead to significantly greater improvements in pain? These are questions

addressed in the RM-ANOVA.

Many of the assumptions for a mixed-design RM-ANOVA are similar to

others we have noted in this chapter, because they reflect basic assumptions of the

TABLE 3 Fictitious Data for RM-ANOVA Example: 
Pain Scores at Three Time Points (T1–T3) for Three Treatment Groups

Bedrest Group Exercise Group Control Group

T1 T2 T3 T1 T2 T3 T1 T2 T3

95 85 80 75 60 65 35 30 35
80 70 75 80 45 55 50 40 45
60 50 55 50 30 35 45 45 45
45 30 45 85 70 65 30 20 25
55 45 40 70 55 55 85 85 80
50 40 45 85 65 60 60 50 50
75 65 60 60 35 40 90 85 85
80 70 70 65 40 50 90 75 80
40 35 30 80 60 60 80 65 70
95 85 85 45 10 20 60 60 60

Means:

67.50 57.50 58.50 69.50 47.00 50.50 62.50 55.50 57.50

Overall Bedrest Mean �
61.17

Overall Exercise Mean �
55.67

Overall Control Mean �
58.50

Overall time means: T1 � 66.50; T2 � 53.33; T3 � 55.50 Grand mean � 58.44
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general linear model. These include the assumptions of multivariate normality,

homogeneity of variances, and homogeneity of the variance–covariance matrix, as in

MANOVA. However, RM-ANOVA has some unique assumptions—the assumption

of sphericity (the variance of the difference between the estimated means for any

pair of time points is the same as for any other pair) and the related assumption of

compound symmetry (homogeneity of within-treatment variances and homogeneity

of covariance between pairs of treatment levels).

Although ANOVA and its variants are fairly robust to violations of such as-

sumptions as the normality and homogeneity of variances, the same cannot be said

about violations of sphericity and compound symmetry. There are differences of

opinion about what to do if these assumptions are violated, as well as differences in

how to assess violations. The most widely used test is Mauchly’s test, which tests

the null hypothesis that sphericity holds true. If this test is statistically significant, it

suggests that the assumption has been violated. The test has been criticized, howev-

er, on several grounds. First, the test is not robust to violations of the normality as-

sumption, and it has low statistical power. When samples are small, Mauchly’s test is

often unable to detect violations that actually exist, even when such violations are

extreme. Yet with a very large sample, Mauchly’s test can be statistically significant

even if there are minor violations of sphericity. An alternative approach to assessing

sphericity is discussed subsequently.

CORRECTIONS TO SIGNIFICANCE TESTS FOR SPHERICITY VIOLATIONS If spheric-

ity is violated, two alternative strategies are most often proposed. One approach is to

make an adjustment when testing the F statistic, to correct for the inflated risk of a Type

I error that can occur when sphericity does not hold. To make this adjustment, it is nec-

essary to compute a statistic called epsilon, which is a measure of the degree to which

sphericity has been violated. When sphericity is met perfectly, epsilon is 1.0. The lower

the value of epsilon, the worse is the violation of sphericity. The lower bound of epsilon

depends of the number of measurements on the repeated measures factor. When there

are three measurements (as in our example), the lower bound of epsilon is 0.50. In gen-

eral, the larger the number of measurements, the greater is the potential for violating

the sphericity assumption. Because epsilon is an index of magnitude of violation of

sphericity, some have suggested inspecting values of epsilon rather than relying exclu-

sively on Mauchly’s test. If epsilon is close to 1.0, then violations to sphericity are likely

to be minor. If epsilon is close to the lower bound, then it is more important to use the

correction, or to use the alternative approach discussed in the next section.

TIP: The lower bound of epsilon can be calculated through a simple
formula: 1 � ( k � 1), where k is the number of measurements in the within-
subjects factor. For example, if k � 4, the lower bound for epsilon � .33 and
if k � 4, the lower bound � .25. Thus, when k � 2 (only two time periods),
epsilon always equals one and sphericity necessarily holds.

Epsilon, which is used as a correction factor in evaluating the F statistic, can be

estimated using different methods. The two most widely used formulas are called the

Greenhouse-Geisser correction and the Huynh-Feldt correction. The Greenhouse-
Geisser correction is a conservative correction that tends to underestimate epsilon.

The Huynh-Feldt correction, by contrast, tends to overestimate epsilon, which has

led some statisticians to suggest averaging the two when their values are very differ-

ent. The more conservative correction is especially appropriate when departures

from sphericity are severe—for example, when epsilon is less than .75.
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Whichever estimate of epsilon is used, the correction works the same way:

Degrees of freedom for the F test are multiplied by epsilon. When epsilon is 1.0, df
are unchanged. But when epsilon is low, df are lowered as well, which makes it more

difficult to obtain a significant result. For example, if epsilon were .50, the correction

would turn an F test with 2 and 60 df into an F test with 1 and 30 df (2 � .50 � 1 and

60 � .50 � 30). The value of F would need to be 3.15 to be statistically significant at

the .05 level for the first test, but would need to be 4.17 for the second one. In SPSS,

the values of epsilon using both correction formulas are calculated, and then the re-

sults of the F tests with both corrections (and also without the correction) are shown.

THE MANOVA ALTERNATIVE An alternative to correcting for violations to

sphericity is to use a test that does not assume sphericity, which usually means

switching to MANOVA. In a mixed-design RM-ANOVA, the various measurements

of the dependent variable (Time 1 to Time 3 in our example) are considered a within-

subjects independent variable representing time. If the same data were analyzed by

MANOVA, each measurement would be used as a separate dependent variable. In

our example, there would be three dependent variables, one for each pain score.

The reason for preferring univariate mixed-method RM-ANOVA with epsilon

corrections over the MANOVA solution is that the former tends to be more powerful,

meaning fewer Type II errors. SPSS routinely produces the results both ways when

an RM-ANOVA is requested within the GLM routine. This leads to a confusing

array of output, but the advantage is that the results can be compared immediately.

The Computer and Mixed-Design RM-ANOVA

Figure 7 presents selected panels of output from a mixed-design RM-ANOVA. In

this analysis, the data presented in Table 3 were analyzed using SPSS (Analyze ➜
General Linear Model ➜ Repeated Measures). We have omitted from this figure the

output for Descriptive Statistics (which shows means and SDs for each cell of this

3 � 3 design), and for the Box M test. In this example, the Box M test had a p value

of .015, which is greater than the recommended criterion of p � 001. Thus, we can

conclude that the assumption of the homogeneity of the variance–covariance matrix

has not been markedly violated.

Panel A in Figure 7 (Multivariate Tests) shows the MANOVA results for the Time
(within subjects) factor and the Time * Group interaction. For each effect, SPSS com-

puted the four multivariate tests described earlier—Pillai’s trace, Wilks’ lambda,

Hotelling’s trace, and Roy’s largest root. Regardless of which test is used, both time and

the interaction effect are significant. The three sets of pain measures are significantly

different at p � .001. The treatment factor, conditional upon time of measurement, is

also significant at p � .001. Values for partial eta2 are shown in the far-right column.

Panel B presents results for Mauchly’s test of sphericity for the within-subjects

factor Time. As shown in the shaded area, the test is not significant, p � .628 and so

we can retain the null hypothesis of sphericity. This panel also shows values for ep-

silon. The first, Greenhouse-Geisser epsilon, is .966, which is only a minor departure

from a “perfect” epsilon of 1.0. The less conservative Huynh-Feldt epsilon is 1.00.

Thus, there appears to be sufficient evidence that the sphericity assumption has not been

violated, which means we can use the tests of within-subjects effects in the next panel,

rather than using MANOVA results.

As it turns out, results for both univariate and multivariate tests lead to the

same conclusions. Panel C (Within Subjects Effects) shows that the F test for Time,
with sphericity assumed and also with corrections, is significant at p � .001. Note

that degrees of freedom were adjusted when correction factors were applied. For
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Within Subjects
Effect Mauchly’s W

Approx. 
Chi-Square df Sig.

Epsilona

Greenhouse-
Geisser

Huynh-
Feldt

Lower-
bound

Time .965 .931 2 .628 .966 1.000 .500

Effect Value F
Hypothesis

df Error df Sig.
Partial Eta-
Squared

Time Pillai’s Trace .888 103.537a 2.000 26.000 .000 .888

Wilks’ Lambda .112 103.537a 2.000 26.000 .000 .888

Hotelling’s Trace 7.964 103.537a 2.000 26.000 .000 .888

Roy’s Largest Root 7.964 103.537a 2.000 26.000 .000 .888

Time * group Pillai’s Trace .699 7.248 4.000 54.000 .000 .349

Wilks’ Lambda .311 10.310a 4.000 52.000 .000 .442

Hotelling’s Trace 2.184 13.650 4.000 50.000 .000 .522

Roy’s Largest Root 2.170 29.290b 2.000 27.000 .000 .685

General Linear Model
A Multivariate Testsc

aExact statistic
bThe statistic is an upper bound on F that yields a lower bound on the significance level
cDesign: Intercept � group Within-Subjects Design: Time

B Mauchly’s Test of Sphericityb

Measure: Pain

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.
aMay be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed
in the Tests of Within-Subjects Effects table.

bDesign: Intercept � group Within-Subjects Design: Time

Source
Type III Sum
of Squares df

Mean
Square F Sig.

Partial Eta-
Squared

Time Sphericity assumed 2990.556 2 1495.278 105.091 .000 .796

Greenhouse-Geisser 2990.556 1.932 1547.885 105.091 .000 .796

Huynh-Feldt 2990.556 2.000 1495.278 105.091 .000 .796

Lower-bound 2990.556 1.000 2990.556 105.091 .000 .796

Time * Group Sphericity assumed 807.778 4 201.944 14.193 .000 .513

Greenhouse-Geisser 807.778 3.864 209.049 14.193 .000 .513

Huynh-Feldt 807.778 4.000 201.944 14.193 .000 .513

Lower-bound 807.778 2.000 403.889 14.193 .000 .513

Error (Time) Sphericity assumed 768.333 54 14.228

Greenhouse-Geisser 768.333 52.165 14.729

Huynh-Feldt 768.333 54.000 14.228

Lower-bound 768.333 27.000 28.457

C Tests of Within-Subjects Effects
Measure: Pain

FIGURE 7 SPSS printout of mixed-design RM-ANOVA.
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D Tests of Within-Subjects Contrasts
Measure: Pain

Source Time
Type III Sum
of Squares df

Mean
Square F Sig.

Time Level 2 vs. Level 1 5200.833 1 5200.833 160.943 .000

Level 3 vs. Level 1 3630.000 1 3630.000 155.571 .000

Time * group Level 2 vs. Level 1 1351.667 2 675.833 20.914 .000

Level 3 vs. Level 1 1040.000 2 520.000 22.286 .000

Error (Time) Level 2 vs. Level 1 872.500 27 32.315

Level 3 vs. Level 1 630.000 27 23.333

E Tests of Between-Subjects Effects
Measure: Pain

Transformed Variable: Average

Source
Type III Sum
of Squares df

Mean
Square F Sig.

Partial Eta-
Squared

Intercept 102472.593 1 102472.593 281.254 .000 .912

Group 151.296 2 75.648 .208 .814 .015

Error 9837.222 27 364.342

(I) 
Time

(J)
Time

Mean
Difference

(I � J)
Std. 
Error Sig.a

95% CI for Differencea

Lower 
Bound

Upper
Bound

1 2 13.167* 1.038 .000 10.518 15.816

3 11.000* .882 .000 8.749 13.251

2 1 �13.167* 1.038 .000 �15.816 �10.518

3 �2.167 .995 .038 �4.707 .374

3 1 �11.000* .882 .000 �13.251 �8.749

2 2.167 .995 .038 �.374 4.707

Time Mean
Std.
Error

95% CI

Lower
Bound

Upper 
Bound

1

2

3

66.500

53.333

55.500

3.531

3.734

3.312

59.256

45.671

48.703

73.744

60.995

62.297

F Estimated Marginal Means

TIME

F1 Estimates

Measure: Pain

F2 Pairwise Comparisons
Measure: Pain

Based on estimated marginal means
*The mean difference is significant at the .05 level.
aAdjustment for multiple comparisons: Bonferroni.

FIGURE 7 Continued
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Experimental
Group Time Mean

Std.
Error

95% CI

Lower
Bound

Upper
Bound

Bedrest 1 67.500 6.115 54.952 80.048

Group 2 57.500 6.468 44.229 70.771

3 58.500 5.737 46.728 70.272

Exercise 1 69.500 6.115 56.952 82.048

Group 2 47.000 6.468 33.729 60.271

3 50.500 5.737 38.728 62.272

Control 1 62.500 6.115 49.952 75.048
Group 2 55.500 6.468 42.229 68.771

3 57.500 5.737 45.728 69.272

G Experimental Group * Time

Measure: Pain
E

st
im

at
ed

 M
ar

gi
na

l M
ea

ns

Time

Estimated Marginal Means of Pain

H                                      Profile Plots

45

1 2 3

Experimental

Group

Bedrest Group

Exercise Group

Control Group

50

55

60

65

70

FIGURE 7 Continued

example, in the analysis for Time, the original df of 2, when multiplied by the

Greenhouse-Geisser epsilon of .966, equals 1.932. In this univariate table, with or

without corrections, both Time and Time * Group are statistically significant—the

same result obtained earlier via MANOVA. Values for partial eta2, however, are

somewhat different from those shown in the multivariate table.

Panel D presents a series of within-subjects contrasts that are available through

the “Contrasts” option within SPSS. Here, we requested that preintervention pain

scores (referred to as Level 1 of the Time variable) be contrasted with the two post-

treatment scores (Levels 2 and 3). For the main effect of Time, averaged across treat-

ment groups, T1 pain scores are significantly different from both T2 and T3 pain

scores at p � .001. The bottom of Panel D shows the contrast for the Time * Group
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interaction, again contrasting T1 scores against the two posttreatment scores. Again,

both contrasts are significant at p � .001. This means that the significant difference

between T1 versus T2 pain scores (and T1 versus T3 pain scores) is conditional upon

group—changes over time were not consistent for the three treatment groups.

TIP: The contrasts shown in Panel D were generated by selecting
“Simple” as the contrast option for the within-subjects factor and
choosing the preintervention period (T1) as the reference time period.
Several types of contrast are available in SPSS. The default option, called
“Deviation,” contrasts all levels of a factor, except the reference category,
to the grand mean rather than to the reference category.

Panel E focuses on between-subjects effects for the variable Group. In the

context of a clinical trial such as in this example, this panel is seldom of much inter-

est because it concerns group differences averaged across all time periods—not

group differences postintervention. In our example, the between-subjects test for

the “Transformed Variable: Average” (i.e., the group’s average pain scores across

the three time periods) yielded an F of .208 (2, 27), which was nonsignificant

(p � .814).

The next two panels show Estimated Marginal Means. In SPSS, marginal

means can be requested for the grand mean (in our example, MG � 58.44), the with-

in-subjects factor, between-subjects factors, and interactions. Because in this exam-

ple the Group factor was not significant (and of little interest, in any event), we

instructed the computer to produce marginal means for Time (Panel F) and Group *

Time (Panel G).

The first part of Panel F presents descriptive information on the means and

SDs for the three time periods, averaged across participants in all three treatment

groups. It also shows 95% confidence intervals around the time factor means. The

second part of Panel F, labeled Pairwise Comparisons, is of greater interest because

it allows us to pinpoint which pain measurements were significantly different from

other ones. For these comparisons, we opted to make a Bonferroni adjustment to

protect against the inflated risk of a Type I error. According to the printout, pain

scores in Time 1 (preintervention) were significantly different from those in both

Time 2 and Time 3— consistent with the information in Panel D. Pain scores, across

treatment groups, were significantly higher at T1 than at T2 or T3. The difference in

mean pain scores between T2 and T3 was not, however, significant—information that

was not provided in Panel D.

Panel G presents descriptive information about the interaction of Time and

Group—information that is plotted graphically in the profile plots in panel H. The

graph indicates that pain scores declined in all three groups, but the declines were

most substantial in the exercise group. The exercise group declined from a mean

of 69.5 at baseline to means of 47.0 and 50.5 at T2 and T3, respectively. By

contrast, declines in the control group were small, down from 62.5 at baseline to

57.5 at T3.

TIP: To identify which changes over time are contributing to significant
interactions, researchers often use a series of paired t tests, using a
Bonferroni correction to guard against the inflated risk of a Type I error.
In our example, this might mean running paired t tests for T1-to-T2 and
T1-to-T3 changes for each group.
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Example of mixed-design RM-ANCOVA:

Weis, Lederman, Lilly, and Schaffer (2008) examined the effect of military deploy-

ment and perceived community support on women’s acceptance of pregnancy in

each trimester of pregnancy. The dependent variable was scores on an Acceptance of

Pregnancy scale across the three trimesters as the within-subjects factor. The two

between-subjects factors were husbands’ deployment status (deployed or not

deployed in the first trimester) and location of perceived community support (off

base versus on base). Amount of community support was used as a covariate.

Mauchly’s test indicated that sphericity was not met, so the Greenhouse-Geisser

epsilon correction was used.

CANONICAL CORRELATION AND DISCRIMINANT ANALYSIS

Several other types of analyses use least-squares estimation. In this section, we

briefly discuss two such analyses, without elaboration and without computer exam-

ples. Both are complex procedures that are infrequently used by nurse researchers.

We mention them briefly to help you decide if they might be appropriate for your

data, and to make it easier for you to understand journal articles that report their use.

Those interested in a more thorough description should consult such texts as

Tabachnick and Fidell (2007) or Hair, Black, Babin, and Anderson (2009).

Canonical Analysis

Canonical analysis can be used when researchers want to analyze the relationship

between two variable sets, each of which has two or more variables. For example, a

researcher might want to understand the relationship between women’s demograph-

ic characteristics on the one hand (e.g., age, race/ethnicity, educational attainment)

and their use of health-promoting strategies during pregnancy (e.g., higher vitamin

intake, reduced alcohol consumption) on the other. Canonical analysis is often used

when the researcher has a set of independent variables (sometimes called the

variables on the left) and a set of dependent variables (the variables on the right).
Canonical analysis can also be used, however, even when the sets of variables are not

conceptualized as independent or dependent—that is, when the researcher is simply

exploring relationships between two separate sets of variables.

BASIC CONCEPTS FOR CANONICAL ANALYSIS In multiple regression, the inde-

pendent variables are weighted by regression coefficients and then combined to form

a linear composite that yields the highest possible correlation with the dependent vari-

able. In canonical analysis, the underlying principle of forming linear combinations is

the same, but now several variables are on both sides of the equation. As a result, two

linear composites, called canonical variates, must be formed—one combination on

the independent variable side (X) and the other on the dependent variable side (Y).

Canonical variates can be correlated in more than one way. Canonical analysis

differentially weights both the X and Y variables in such a way that the maximum

possible correlation between the two sets is obtained. After yielding the highest pos-

sible canonical correlation coefficient (Rc), additional canonical correlations are

computed, but subsequent Rcs are subject to a restriction: Successive pairs of canon-

ical variates of the Xs and Ys cannot be correlated with previously created pairs of

canonical variates (roots). Thus, the second Rc is based on a linear composite of the

X and Y variables that is not correlated with the first root, and that yields the second

largest Rc possible within the data set.
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The canonical correlation coefficient, Rc, can be interpreted like a multiple cor-

relation coefficient, with values ranging from 0.0 to 1.00. The square of a canonical

correlation, R2
c, represents the variance shared by the specific linear combination of

the two sets of variables. The maximum number of Rcs in any canonical analysis is

the number of variables in the smaller of the two sets. For example, if there were five

X variables and three Y variables, there would be a maximum of three Rcs.

To illustrate, consider having a set of demographic variables as independent vari-

ables and a set of measures of healthcare behaviors during pregnancy as dependent

variables. Canonical analysis might reveal that there are two reliable ways in which the

sets of canonical variates are related. The first might concern the women’s financial

circumstances; for example, vitamin consumption and number of prenatal visits might

be correlated with family income. A second way might concern women’s knowledge;

for example, smoking and alcohol consumption might be correlated with education

because better educated women might be more familiar with research on the ill effects

of these behaviors. Thus, each Rc essentially captures a dimension of the relationship

between the two sets of variables. Each dimension must be interpreted by considering

the pattern of coefficients associated with the variables in the two sets.

INDEXES ASSOCIATED WITH CANONICAL ANALYSIS Canonical analysis pro-

vides information on how to “weight” variables in the analysis to form the canonical

variate. Canonical weights are standardized weights (like beta weights) associated

with each X and Y variable. Sometimes the magnitudes of the canonical weights are

interpreted in terms of the relative importance of individual X and Y variables in

forming the canonical variate, but canonical weights suffer from the same interpre-

tive limitations as beta weights in regression analysis.

Structure coefficients are often used for interpreting canonical analysis re-

sults. Structure coefficients (or loadings as they are often called) represent the corre-

lation between the original X and Y variables and the canonical variate. There are

structure coefficients for each variable with each canonical variate pair. The higher

the absolute value of the structure coefficient for a variable, the more important that

variable is in defining the underlying dimension of that canonical variate pair. In our

example, for instance, income, prenatal visits, and vitamin use would have high

structure loadings on the first pair of canonical variates, while education, smoking,

and alcohol use would have high loadings on the second pair. Structure coefficients

with an absolute value of .30 or higher usually are considered high enough for mean-

ingful interpretation.

STATISTICAL TESTS IN CANONICAL ANALYSIS Bartlett’s test of Wilks’ lambda (�)
can be used to test whether one Rc, or a set of Rcs, is significantly different from zero.

As discussed in the section on MANOVA, Wilks’ � is an index of variance that is

unaccounted for. The significance of Wilks’ lambda can also be evaluated using the

F distribution.

After determining whether all Rcs, taken together, are significantly different

from zero, analyses are undertaken to assess whether individual Rcs are significant—

i.e., whether each dimension identified in the analysis is a reliable one. If the overall

test is significant, then it can be concluded that the first canonical correlation is sig-

nificant. A new lambda is computed by removing the squared value of the first R2
c. If

this lambda is statistically significant, it can be concluded that the first two canonical

correlations are statistically significant. This “peel-away” process continues until a

lambda is not significant at the desired α.

Assumptions described previously for other multivariate procedures also apply

to significance testing within canonical analysis. These include the assumption of
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multivariate normality, linearity between pairs of variables, and homoscedasticity.

Variables in canonical analysis can be either continuous interval- or ratio-level vari-

ables, or dummy-coded categorical variables.

LIMITATIONS OF CANONICAL ANALYSIS Canonical analysis is the most general

of the multivariate techniques we have discussed but it is infrequently used—despite

the fact that most researchers do, in fact, have multiple independent and dependent

variables in their data set. One difficulty is that results are usually hard to explain and

to communicate effectively. Moreover, the results of canonical analysis are not al-

ways easy to interpret, even for the researcher. If an underlying dimension in the pat-

tern of structure coefficients cannot be readily identified, it may be problematic to

understand what the canonical correlation coefficients mean. A canonical solution is

geared to maximizing correlation, not to enhancing interpretability.

Example of canonical correlation:

Walker, Pullen, Hertzog, Boekner, and Hageman (2006) used canonical correlation in

their analysis of relationships among variables in Pender’s Health Promotion Model

in a sample of older rural women. Variables on the left (“determinants”) included

such cognitive-perceptual factors as self-efficacy for physical activity and barriers to

physical activity. Variables on the right were actual markers of physical activity, such

as weekly stretching minutes and VO2 Max. One interpretable canonical variate was

identified that explained 22% of the variance—that is, Rc
2 � .22.

Discriminant Analysis

Discriminant analysis (sometimes called discriminant function analysis), like

multiple regression, develops a predictive equation that is a linear combination of the

independent variables in the analysis. In discriminant analysis, however, the dependent

variable is a categorical variable indicating group membership. For example, we could

use discriminant analysis to predict compliant versus noncompliant diabetics or infants

who do or do not succumb to sudden infant death syndrome. Discriminant analysis

also has some similarities with canonical analysis. When there are more than two

groups, separate linear combinations—called discriminant functions—are formed to

maximally separate the groups, and loadings on the discriminant functions can be used

to interpret the dimensionality that separates the groups. We present only a brief

overview of this technique here—in large part because an analysis called logistic

regression is most often used when the dependent variable is a nominal-level variable.

BASIC CONCEPTS FOR DISCRIMINANT ANALYSIS Using multiple regression gradu-

ate nursing students’ grade point average (GPA) can be predicted on the basis of GRE

scores, undergraduate grades, and scores on a motivation scale. Suppose that instead of

predicting graduate GPA we wanted to predict whether the student would receive a

graduate degree. We could code this outcome as 1 for graduate degree completion and 0

for noncompletion. Discriminant analysis could be used to determine whether students

who finished the program could be reliably discriminated from those who did not, based

on the four predictor variables.

Discriminant analysis forms a linear combination of the independent variables

to predict group membership. The linear discriminant equation is similar to the

multiple linear regression equation. In unstandardized form, the equation predicts a

discriminant score (D score) that equals an intercept constant a, plus values on the
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predictors that are weighted with b weights. The discriminant analysis solves for the

values of a and b so as to maximize the separation of the groups, using the least-

squares criterion. The discriminant equation can also be standardized, providing a

better means for comparing the relative contribution of the predictors.

When the dependent variable involves three or more groups (categories), there

is more than one discriminant function, and each has a separate equation for predict-

ing discriminant scores. The number of discriminant functions is either the number

of groups minus one or the number of predictor variables, whichever is smaller. For

example, suppose that we wanted to use our four predictors (two GRE scores, moti-

vation scores, and undergraduate GPA) to predict whether a graduate student would

(1) obtain a graduate degree, (2) voluntarily drop out of the program, or (3) flunk

out. In this case, there would be two discriminant functions (i.e., three outcome cat-

egories minus 1 � 2). When more than one discriminant function is derived, the first

function extracts the maximum amount of variance possible. The second function

has the second highest ratio of between-groups to within-groups sums of squares,

but is subject to the constraint that it must be uncorrelated with the first function.

TIP: In discriminant analysis, the dependent variable is a categorical variable
measured on a nominal scale (or on an ordinal scale with a small number of
values). Independent variables can be continuous interval- or ratio-level
variables, or dummy-coded dichotomous variables. When predictors are all
dichotomous, however, the discriminant function is not optimal.

The relationship between discriminant (D) scores and individual predictors can

be evaluated by computing correlations, which are called structure coefficients or

loadings, as in canonical analysis. Such structure coefficients are useful for interpret-

ing the results of a discriminant analysis when there are two or more functions.

Different underlying dimensions may contribute to discrimination among multiple

groups, and structure coefficients are used to interpret the pattern. For example, sup-

pose we used the four predictors from our graduate program example to discriminate

between completers, dropouts, and “flunkouts.” A structure matrix for this example

might have high loadings for motivation on the first function, and high loadings on the

two GRE scores on the second function. The two separate dimensions captured in this

analysis would be motivation on the one hand and cognitive ability on the other hand.

CLASSIFICATION IN DISCRIMINANT ANALYSIS Based on discriminant scores,

statistical criteria can be used to classify cases into groups. When the classification

process is done for the original sample, the percent of correct classifications can be

estimated by comparing actual group membership with projected group membership

for each case. If classification is successful (i.e., a high percentage of correct classi-

fications), the discriminant function equation can be used to classify new cases for

which group membership is unknown—in our example, for predicting students who

would complete graduate training.

Discriminant analysis develops a classification equation for each group. Then

raw data for a case is inserted into each equation, and this yields that case’s classifi-

cation probability for each group. The case is assigned to the group for which it has

the highest classification probability.

Discriminant analysis yields a summary classification table that indicates degree

of success. Table 4 illustrates such a classification table for our fictitious example of

predicting completion versus noncompletion of graduate school. This table shows that

of 8 students who did not finish the program, 7 (87.5%) were correctly classified, and
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TABLE 4 Summary Classification Table for Graduate School 
Completion Example

Actual Group Membership

Predicted Group Membership

0 � Did Not Graduate 1 � Graduated

0 Did not graduate (N � 8) 7 (87.5%) 1 (12.5%)
1 Graduated (N � 12) 1 (8.3%) 11 (91.7%)

Overall rate of successful classification � 90.0% (18 � 20)

1 (12.5%) was misclassified as finishing the program. Among the 12 students who did
actually get a graduate degree, 1 (8.3%) was misclassified as a likely noncompleter but

11 (91.7%) were correctly classified. Thus, 18 of the 20 students (90.0% of the sample)

were correctly classified on the basis of the discriminant analysis.

Classification rates are typically higher in the sample used to generate the

discriminant function than in other samples from the same population, and so the

percentage of correctly classified cases is usually an inflated estimate of actual

performance in the population. Cross-validation of the discriminant function is

highly recommended, and can be achieved within a single sample—by dividing it

in half—if the sample is sufficiently large.

SIGNIFICANCE TESTS IN DISCRIMINANT ANALYSIS The main significance test

in discriminant analysis is the test of the null hypothesis that the discriminant func-

tions reflect chance sampling fluctuations (i.e., that groups cannot be reliably distin-

guished on the basis of the predictors in the analysis). A test of the null hypothesis

can be based on Wilks’ lambda, and the significance level of the lambda statistic is

based on a transformation that approximates a chi-square or F distribution. (Other

statistics include the now-familiar Pillai’s trace criterion and Hotelling’s trace.)

When there is more than one discriminant function, the analysis typically evalu-

ates whether each function contains reliable discriminatory power. Computer

programs usually use a “peel-away” process to successively test discriminatory power

as functions are removed, analogous to the process described for canonical correlation.

TIP: A significant Wilks’ lambda does not necessarily imply successful
classification. With a large sample, minor group differences can result in a
significant Wilks’ lambda without resulting in good discrimination among
groups.

Assumptions underlying the use of discriminant analysis are the same as for

MANOVA. Multivariate normality is assumed, but this assumption is usually robust to

violation when there are more than 20 cases in the smallest group. Discriminant analysis

also assumes a linear relationship among all pairs of predictors within each group, as well

as homogeneity of the variance–covariance matrix. When the sample size is large and

groups are of approximately equal size, the homogeneity assumption is fairly robust.

STRATEGIES FOR ENTERING PREDICTORS IN DISCRIMINANT ANALYSIS Standard

discriminant analysis involves the direct entry of all predictors as a block, analogous

to simultaneous multiple regression. Discriminant analysis can also be performed 

hierarchically—that is, researchers can specify the order of entry of the predictor

variables, either for theoretical reasons or to control confounding variables.
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Discriminant analysis can also be performed in an exploratory stepwise fash-

ion, whereby variables are stepped into the discriminant function in the order in

which they meet certain statistical criteria. Various statistical criteria can be used in

entering predictors in a stepwise analysis. One criterion is the minimization of

Wilks’ lambda, whereby the variable that results in the smallest Wilks’ lambda is

selected for entry at each step. Another criterion is the Mahalanobis distance (D2),
a generalized measure of the distance between groups. The results are often the same

regardless of which criterion is used.

Example of discriminant analysis:

Elliott, Horgas, and Marsiske (2008) used discriminant analysis to explore whether mild

cognitive impairment (MCI), an indicator of early cognitive changes in the elderly,

could be identified using fairly simple screening tools. A team of clinicians classified a

sample of 130 elderly participants into one of three groups: cognitively intact, MCI, or

probable dementia. Participants completed a series of cognitive tests, a demographic

form, and a depression scale and scores were used to “predict” group membership.

Overall, 95% of the participants were correctly classified. The first discriminant func-

tion differentiated those who were cognitively intact from those who were not (MCI and

impaired), while the second one differentiated the MCI cases from all others. High load-

ings on the first function were found for tests of more generalized cognitive function.

Loadings on the second function were high primarily on memory measures, indicating

the disproportionate memory loss associated with MCI.

RESEARCH APPLICATIONS OF MULTIVARIATE 
GLM ANALYSES

The multivariate statistical procedures discussed in this chapter are used primarily to

test research hypotheses and to address research questions—although discriminant

analysis can be used in pragmatic applications when classification is desired. Many

research questions lend themselves, in particular, to ANCOVA, MANOVA, and

mixed-design RM-ANOVA. The remainder of this section discusses the presentation

of results from these techniques.

The Presentation of ANCOVA in Research Reports

ANCOVA results are presented in much the same fashion as ANOVA results. When

there is a single one-way ANCOVA to report, it may be efficient to simply describe

the results in the text. As an example of a narrative presentation, here is how the

ANCOVA results from Figure 4 might be reported:

The posttreatment pain scores for the three treatment groups were analyzed using

ANCOVA, with pretreatment pain scores as the covariate. After controlling for ini-

tial levels of pain, group differences in posttreatment pain scores were highly

significant, F (2, 26) � 20.08, p � .001. The adjusted group means for the bed rest,

exercise, and control groups were 56.5, 44.0, and 59.6, respectively. A multiple

comparison procedure with a Bonferroni correction indicated that, net of pretreat-

ment pain, patients in the exercise group experienced significantly less posttreat-

ment pain than those in either the bedrest or the control group (p � .05).

Posttreatment pain scores of the bedrest and control groups were not significantly

different from each other.
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TABLE 5 Example of an ANCOVA Results Table

Treatment 
Group

Adjusted Meana

(SE ) 95% CI Partial Eta2

Bedrest Group (N � 10) 56.48 (1.83) 52.72, 60.25 .05b

Exercise Group (N � 10) 43.95 (1.84) 40.18, 47.73 .58b

Control Group (N � 10) 59.56 (1.84) 55.78, 63.35 —

aMeans were adjusted for pre-intervention pain scores.
bGroup effect, net of pre-treatment pain scores.

F (2, 26) for groups � 20.08, p � .001.

Analysis of Covariance Results for Postintervention Pain Scores, 
Controlling for Preintervention Pain in Three Treatment Groups.

TABLE 6 Example of an ANCOVA Results Table with Unadjusted Pretest and
Posttest Means

Outcome 
and Time of
Measurement

Bedrest 
(n � 10) 

Mean (SD)

Exercise 
(n � 10) 

Mean (SD)

Control 
(n � 10) 

Mean (SD)

ANCOVA*

F (2, 26) p

Pain Scores

Pretreatment 67.5 (20.2) 69.5 (14.2) 62.5 (22.6)
Posttreatment 57.5 (20.2) 47.0 (18.6) 55.5 (22.4) 20.08 � .001

Anxiety Scores
Pretreatment 15.3 (4.2) 15.8 (4.3) 15.6 (4.1)
Posttreatment 16.7 (3.5) 14.8 (3.0) 16.0 (3.9) 3.30 .051

*ANCOVA results are for group differences on posttreatment scores, controlling pre-treatment scores

on the same outcome.

Pretreatment/Posttreatment Means on Pain and Anxiety Scores 
for Three Treatment Groups, with ANCOVA Results.

On the other hand, even with a single dependent variable, a table might be

desirable if it is considered important to report other aspects of the analysis. For

example, when the relationship between individual covariates and the dependent

variable is of substantive interest, an ANCOVA summary table might be needed.

A summary table would be similar to Panel B of Figure 4, showing mean squares for

all sources of variation, together with all F tests.

In other cases, it might be important (or necessary, depending on the journal)

to show 95% CIs or effect sizes. Table 5 illustrates another presentation that includes

information about adjusted means, 95% CIs, partial eta-squared, and ANCOVA

results. This table could be adapted for multiple ANCOVAs (i.e., multiple dependent

variables) by including extra rows, and separate footnotes to show F and p value for

each ANCOVA.

If it is important to show changes over two points in time, a table could be con-

structed to show pretest and posttest means, as in the example in Table 6. This table

shows ANCOVAs for two different dependent variables (the second one was invented

for illustrative purposes). In this table, the far-right columns show the ANCOVA F
values and associated ps. If there were only one dependent variable, this information

could be included as a footnote.
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In sum, there are alternative ways to summarize ANCOVA information

because in different studies researchers may wish to highlight different information.

A table such as our Table 6 would be especially attractive if, for example,

improvements over time were notable and worthy of discussion. A figure showing

mean changes over time for different groups might also be attractive. In other cases,

pretest means might be of little interest, in which case adjusted means might be rele-

vant. Also, if the covariate is not a pretest measure of the outcome, but is a control

variable (e.g., participants’ age), group means adjusted for the covariate would be

appropriate.

The Presentation of MANOVA and MANCOVA 
in Research Reports

MANOVA and MANCOVA results are usually displayed in tables similar to

those for ANCOVA. As with ANCOVA, the level of detail and the manner of

presenting descriptive information such as means or adjusted means depends on

the nature of the questions being asked, the pattern of results, and journal

requirements.

Typically, results are shown for both univariate tests and for multivariate tests.

Table 7 illustrates one such presentation, using data from our MANCOVA analysis

of posttreatment pain scores and medications. This table shows the mean adjusted

posttreatment scores on the two dependent variables, with associated univariate tests.

These values were taken from the SPSS output shown in Panel C of Figure 6.

MANCOVA test results (from Panel B of Figure 6) are then presented. We opted to

report the value of Wilk’s lambda, but another statistic such as Pillai’s trace could

also have been reported. We included the results of multiple comparisons tests in a

footnote. The note indicates which multiple comparison procedure was used

(Bonferroni), which adjusted group means were significantly different from others,

and what the level of significance was.

Note that post hoc tests for analyses described in this chapter are typically re-

ported either in the text or in a footnote to a table, as in this example. If a complex

pattern of results for post hoc tests occurs, however—for example, the pattern of

group differences varies from one outcome variable to another—then a separate

table might be advantageous.

TABLE 7 Example of a MANCOVA Results Table with Adjusted Means

Outcome Variable

Bedrest 
(n � 10)

Meana (SE)

Exercise 
(n � 10)

Meana (SE)

Control 
(n � 10)

Meana (SE)

Significance Tests

F (df ) p

Pain Scores 56.5 (1.8) 44.0 (1.8) 59.6 (1.8) 20.08 (2,26)b �.001

Number of Medications 6.5 (0.6) 4.3 (0.6) 6.6 (0.6) 5.36 (2,26)b .011

MANCOVA Test, Wilks’ Lambda � .38 7.79 (4, 50) �.001

aMeans have been adjusted for pretreatment pain scores.
bMultiple comparison tests on adjusted means, with Bonferroni correction: Exercise group significantly different from Bedrest and Control

groups (both p � .05)

Adjusted Posttreatment Means, by Treatment Group, with ANCOVA and MANCOVA Results.
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TABLE 8 Example of an RM-ANOVA Results Table†

Plasma 
Glucose/
Serum Lipid 
Levels (in mg/dL)

Means (SD) F (p)

Baseline 3 Months 6 Months Group Time G � T

Fasting Plasma Glucose 0.45 (.51) 0.48 (.62) 3.69 (.03)

Intervention Group* 156.2 (25.8) 145.5 (35.3) 151.6 (42.6)
Control Group* 138.9 (25.0) 143.1 (34.1) 144.9 (35.7)

2-hr Postmeal Glucose 1.58 (.23) 4.86 (.01) 12.49 (�.001)

Intervention Group 272.6 (86.2) 152.5 (64.3) 213.7 (52.8)
Control Group 209.4 (75.3) 240.9 (78.7) 227.9 (67.1)

Total Cholesterol 4.23 (.05) 0.64 (.51) 3.72 (.04)
Intervention Group 181.0 (27.2) 170.8 (28.7) 175.9 (22.3)
Control Group 180.5 (21.7) 187.3 (28.9) 190.4 (28.6)

HDL Cholesterol 0.09 (.77) 0.74 (.47) 2.59 (.09)
Intervention Group 44.4 (7.3) 47.3 (7.5) 47.3 (8.5)
Control Group 43.3 (9.7) 43.7 (11.2) 43.3 (10.1)

*Intervention Group n � 18; Control Group n � 16.

†Adapted from Tables 2 and 3 of Kim and Song (2008).

Repeated Measures ANOVA: Mean Plasma Glucose and Serum Lipid Levels Over Time,
by Treatment Group.

The Presentation of Mixed-Design RM-ANOVA
in Research Reports

As with other types of analyses described in this chapter, researchers have several

options for summarizing their RM-ANOVA results in tables. Repeated measures

analyses are particularly complex and can lead to cumbersome tables because there

are two dimensions (time and a between-subjects factor), resulting in several statisti-

cal tests for each dependent variable. If there are more than three time periods, the

sheer mass of numerical information can be daunting, so care must be taken to fea-

ture key patterns.

Table 8, which illustrates one type of presentation, will be more fully dis-

cussed in the research example in the next section. We see that this table shows the

means and standard deviations for several plasma glucose and serum lipid level

measures at three points in time (at baseline, 3 months, and 6 months), for both

an experimental and control group of participants. The last three columns of the table

show statistical test results contrasting means for groups, time periods, and group �
time interactions. Thus, this table efficiently summarizes key results.

Graphs are especially suitable for displaying multiple group means for an

outcome over multiple time periods. The graph shown in Panel H of Figure 7, for

example, communicates quickly and directly the pattern of findings for mean pain

scores at three points in time—although, of course, the figure does not tell the whole

story because we cannot tell from this figure whether differences in means are statis-

tically significant.
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Research Example

This concluding section summarizes a study that used a

mixed-design repeated measures analysis of variance.

Study: “Technological intervention for obese patients

with type 2 diabetes” (Kim and Song, 2008).

Study Purpose: The purpose of this study was to test the

effectiveness of a 6-month nursing intervention—a short

message intervention via cell phones and the Internet—

on levels of plasma glucose and serum lipids in obese

Korean patients with type 2 diabetes.

Methods: A sample of 40 patients from the endocrinol-

ogy department of a tertiary care hospital was recruited

into the study and randomly assigned to an intervention

or control group; 34 patients (18 in the intervention

group and 16 in the control group) completed the study.

Patients in the intervention group got weekly personal-

ized messages via cell phone and Internet that reflected

clinicians’ recommendations based on the patients’ daily

self-checked blood glucose levels, which they transmit-

ted to researchers on a project Web site. Researchers

obtained measures of plasma glucose and serum lipids at

baseline, 3 months, and 6 months.

Analysis: Repeated measures ANOVA was used to assess

differences between the two groups over time on key indi-

cators of plasma glucose (levels of HbA1c, fasting plasma

glucose, and 2-hour postmeal glucose) and serum lipids

(total cholesterol, high density lipoprotein [HDL] choles-

terol, and triglycerides). When a significant interaction

was found, paired t tests with Bonferroni correction were

used to pinpoint specific differences.

Results: Table 8 highlights selected results from the 

RM-ANOVA analyses. Although there were a few signif-

icant main effects for group (e.g., total cholesterol) and

time (e.g., 2-hour postmeal glucose), the primary focus of

the analyses were on the group � time interactions. These

interactions tested whether plasma glucose and serum

lipid levels had improved over time to a greater extent

among those exposed to the intervention. As Table 8

shows, the interactions were significant for fasting plasma

glucose, 2-hour postmeal glucose, and total cholesterol,

but not for HDL cholesterol. Post hoc analyses indicated

significant improvements over time for patients in the

intervention group but not for those in the control group.

In most cases, significant improvements were found at

both the 3-month and the 6-month period.

Summary Points

• The general linear model (GLM) includes a

broad class of statistical techniques often used in

nursing research. The GLM allows tremendous

diversity, including various options for calculating

sums of squares. Type III sums of squares is

typically the default in GLM analyses.

• Analysis of covariance (ANCOVA), a procedure

within the GLM, tests differences in group means

after statistically controlling for one or more

covariate. ANCOVA is especially appropriate in

randomized designs, but is often used to enhance

internal validity in quasiexperimental or case-

control studies.

• In ANCOVA, variability associated with con-

founding variables (or a pretest measures of the

dependent variable) is removed in a first step, and

then group differences in what remains of the vari-

ability in the dependent variable are analyzed.

F tests are used to test the significance of both

covariates and independent variables.

• ANCOVA yields estimated adjusted means of the

groups, i.e., the group means on the outcomes, net

of the effect of the covariates.

• ANCOVA’s assumptions are similar to other previ-

ously described procedures, but also include the

assumption of homogeneity of regression across
groups (parallel regression slopes for groups

being compared).

• Effect size in ANCOVA can be estimated through

partial eta-squared.
• Multivariate analysis of variance (MANOVA) is

used to test differences in group means for two or

more dependent variables simultaneously. In

MANOVA, the dependent variables are linearly

combined into a new composite variable whose

variance is partitioned into different sources, much

as in ANOVA.
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Exercises

The following exercises cover concepts presented in this chap-

ter. Answers to Part A exercises are indicated with a dagger

(†). Exercises in Part B involve computer analyses using the

datasets provided with this text, and answers and comments

are offered on the Web site.

PART A EXERCISES

A1. Indicate which statistical procedure discussed in this chapter

would most likely be used in the following circumstances:

(a) Independent variables: age, length of time in nursing

home, gender, marital status, number of kin living in

25-mile radius; dependent variables: functional ability,

fatigue.

(b) Independent variables: type of stimuli used with

infants (visual, auditory, tactile), gender; dependent

variables: postintervention heart rate, amount of

crying; covariate: baseline heart rate.

(c) Independent variable: presence versus absence of

boomerang pillows; dependent variable: respiratory

capacity before treatment and 1 and 2 days after treatment.

(d) Independent variable: receipt versus nonreceipt of an

intervention to facilitate coping with unexpected hos-

pitalization; dependent variables: scores on a coping

scale, an anxiety scale, and a fear of hospitals scale.

(e) Independent variables: age, cognitive status, length of

time in nursing home, sex; dependent variable: had a

fall versus did not have a fall in the past 12 months.

(f) Independent variable: Mediterranean diet versus regu-

lar (no special) diet; dependent variable: total choles-

terol; covariate: body mass index at baseline.

A2. Suppose you were interested in studying the effect of a

person’s early retirement (at or below age 62 versus at age

65 or later) on indicators of physical and emotional health.

What variables would you suggest using as covariates to

enhance the comparability of the groups?

• The two most widely used statistical tests for

MANOVA are Wilks’ lambda (�) and Pillai’s
trace criterion, both of which can be transformed

to an F distribution for significance testing. Wilks’

lambda is a measure of the proportion of variance

in the composite dependent variable that is not
accounted for by the independent variables.

• A stepdown analysis is one method of evaluating

the contribution of individual dependent variables

to an overall significant MANOVA.

• When covariates are used in MANOVA, the analy-

sis is called multivariate analysis of covariance
(MANCOVA).

• An important assumption for both MANOVA and

MANCOVA is homogeneity of the variance–
covariance matrix. The Box M test is used to

evaluate violations of this assumption.

• Mixed-design RM-ANOVA is used to test mean

differences between groups (the between-subjects

factor) over time (the within-subjects factor).

• Assumptions for mixed-design RM-ANOVA

include compound symmetry and the related as-

sumption of sphericity, which are usually tested

with Mauchly’s test for sphericity.

• If the sphericity assumption is violated, a correc-

tion factor (epsilon) is usually applied to adjust

the risk of a Type I error. Formulas for epsilon

include the Greenhouse-Geisser and the Huynh-
Feldt corrections, which are used to adjust degrees

of freedom for the F test on the within-subjects

factor. The alternative to a correction is to use

MANOVA.

• Canonical analysis is used to study relationships

between two sets of variables, each of which has at

least two variables. In canonical analysis, linear

composites (canonical variates) are formed, one

for each of the two sets. Each pair of canonical vari-

ates yields a separate canonical correlation (Rc)

that corresponds to a dimension of the relationship

between the two sets. The dimension can be

interpreted by examining the structure coefficients
(or loadings) of the original variables on a canonical

variate. Wilks’ lambda is used to evaluate whether

the Rcs are significantly different from zero.

• Discriminant analysis is used to predict a cate-

gorical dependent variable on the basis of several

predictor variables. Discriminant analysis forms

linear combinations of the predictors (discriminant
functions) to predict group membership.

Discriminant (D) scores, can be used to classify

cases into groups. Predicted and actual classifi-

cations can be compared to evaluate the

adequacy of the discriminant model. Structure

coefficients indicate the correlation between the

predictors and discriminant scores. The test of

the null hypothesis that the discriminant func-

tions reflect chance sampling fluctuations is

usually based on Wilks’ lambda.
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A3. Use the following information to compute unadjusted and

adjusted group means on patient satisfaction scale scores:

Grand Mean � 20.521

Click the Model pushbutton, select Full factorial model, then

click Continue to return to the main dialog box. Click the

Options pushbutton and in the top panel (Estimated marginal

means), select racethn and use the right arrow to move it into

the box labeled “Display means for:” Now click “Compare

main effects” to generate multiple pairwise comparisons,

and below that select the Bonferroni adjustment from the

pull-down menu. At the bottom (under Display), select

Descriptive statistics and Estimates of effect size. Then click

Continue and OK to run the analysis. Use the output to

answer these questions: (a) Before any adjustments for the

covariate, what is the range of group means? (b) In the full

factorial model, was the covariate significantly related to

physical health scores? (c) With income controlled, were

racial/ethnic differences in physical health significant?

(d) Compare the adjusted group means with the unadjusted

group means. What happened as a result of the adjustment?

Why do you think this happened? (e) What do the pairwise

comparisons indicate? Was this analysis necessary?

B3. For this exercise, you will use MANOVA to test the hy-

pothesis that there are racial/ethnic differences in scores

on the SF-12, using scores from both the physical health

component (sf12phys) and mental health component

(sf12ment) as the dependent variables and racethn as the

independent variable. Open the main dialog box through

Analyze ➜ General Linear Model ➜ Multivariate. Move

the two SF-12 variables into the box for Dependent

Variables and racethn into the box for Fixed Factor. Click

the Post Hoc pushbutton and make sure that racethn is in

the box “Post hoc tests for:” Select Bonferroni, then click

Continue. On the main dialog box click the Options

pushbutton. From the list of Display options, select

Descriptives, Estimates of effect size, Parameter esti-

mates, and Homogeneity tests. Then click Continue and

OK to run the analysis. Answer the following questions

based on the output: (a) Is the assumption of homoge-

neous variance–covariance matrices violated? (b) Is the

overall multivariate test for differences in racial/ethnic

group means statistically significant? (c) Can we accept

the assumption of homogeneous variances for this analy-

sis? (d) In the panels for univariate results, were group

differences statistically significant? (e) If overall group

differences were significant, which groups were signifi-

cantly different from other groups, and what was the na-

ture of the differences?

B4. Re-run the analysis in exercise B3 as a MANCOVA by

selecting a covariate from the data set. Was the covariate a

significant predictor of the SF-12 scores? Did including

the covariate in the analysis alter the relationship between

racethn and SF-12 scores?

B5. In this exercise, we will test racial/ethnic differences in

depression over time, using CES-D scores from the two

waves of interviews with a subsample of these women. You

will need to begin by excluding women in the white/other

group because there were too few of them in this small

Experimental
Group

Control 
Group

Baseline score 53.88 52.99
Postintervention score 65.23 57.47

Deviation
Unadjusted
Deviation Adjusted

No insurance �2.56 �3.89
Private insurance 3.81 4.97
Public health insurance �1.65 �2.47

A4. Following are some means from a randomized controlled

trial. Indicate at least two ways to analyze the data to test

for treatment effects.

A5. Using data from Table 18, make a graph displaying group

differences over time for one of the outcomes in the Kim

and Song study.

PART B EXERCISES

B1. You will be using the SPSS dataset Polit2SetC to do vari-

ous analyses. For the first analysis (ANCOVA), you will

be testing for racial/ethnic differences (racethn) in physi-

cal health scores (sf12phys), controlling for total house-

hold income (income). Begin by testing the assumption of

homogeneity of regression across the three racial/ethnic

groups (African American, Hispanic, and white/other).

Select Analyze ➜ General Linear Model ➜ Univariate. In

the opening dialog box, move the variable sf12phys into

the slot for Dependent Variable; move racethn into the slot

for Fixed Factors; and move income into the slot for

Covariates. Click the Model pushbutton, which will have

as the default the full factorial model. Click Custom and

then on the left highlight both racethn and income in the

Factors and Covariates box. Make sure that in the “Build

Terms” section, the Type is set to Interaction, and then

click the right arrow to move the interaction (income *

racethn) into the Model box. Click Continue to return to

the main dialog box and then click the Options pushbutton.

Select Homogeneity tests as the option for Display. Then

click Continue, and OK to run the analysis. Use the output

to answer these questions: (a) What can you conclude

from Levene’s test about the homogeneity of error vari-

ance of physical health scores across the three groups? (b)

Is the interaction between race/ethnicity and income sig-

nificant? What does this suggest about the homogeneity of

regression assumption?

B2. Now we can proceed with the ANCOVA analysis described

in Exercise B1. Open the GLM Univariate dialog box again,

which should already have the necessary variable informa-

tion (unless you run Exercise B1 and B2 on different days).

†

†

†

†

†

†
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subsample to permit their inclusion. Go to Data ➜ Select

Cases and click Select “If condition is satisfied” in the

opening dialog box. Click the If pushbutton, and then type

the following into the box to exclude whites/others, who

are coded 3: “racethn NE 3.” Click Continue, then OK to

restrict the analysis to African-American and Hispanic

women. Now run the main analysis, using Analyze ➜
General Linear Model ➜ Repeated. You will first be asked

to give the within-subjects factor a name. We used “Wave”

to designate Wave 1 or Wave 2 measurement of depression.

The number of levels to enter, in the next box, is 2 (i.e., two

waves). Click Add then go to the bottom, where you can

name the dependent variable in a slot labeled Measure

Name. Enter Depression, then click Add. Now click the

Define pushbutton, which brings up a dialog box for defin-

ing variables. Select cesdwav1 and click the right arrow to

move this variable into the list as the first Within-Subjects

Variable. Then select cesd (Wave 2 scores) and move it into

the list as the second Within-Subjects Variable. Next, move

racethn into the slot for the Between-Subjects Factor. Now

click the pushbutton Plots and in the dialog box that appears

move wave into the Horizontal Axis box and racethn into

the Separate Lines box. Click Add, then Continue. Back

on the original dialog box, click Options and at the bottom

of the next dialog box select the following Display options:

Descriptives, Estimates of effect size, and Homogeneity

tests. After clicking Continue and OK to run the analysis,

answer the following questions: (a) What are the null hy-

potheses in this analysis? (b) How many women were in

this analysis, by race? (c) Was the assumption of homo-

geneity of the variance–covariance matrix upheld? What

are the implications for this analysis? (d) Was the assump-

tion of sphericity upheld? What are the implications for this

analysis? (e) Was the assumption of homogeneity of vari-

ances upheld? What are the implications for this analysis?

(f) What are the results for the null hypotheses being tested in

this RM-ANOVA, as identified in question a? (g) Should post

hoc tests be run for this analysis? Why or why not? (h) What

does the profile plot tell us about changes over time?

B6. Using output from one of the previous three exercises

(B3 through B5), create a table to summarize key results of

the analyses. Then write a paragraph summarizing the

findings.

Analysis of Covariance, Multivariate ANOVA, and Related Multivariate Analyses

Answers to Exercises

A1. a. Canonical analysis; b. two-way MANCOVA;

c. mixed design RM-ANOVA; d. MANOVA;

e. Discriminant analysis; f. ANCOVA

A3.

A4. To test for treatment effects in this RCT, we could use ANCOVA, using group as the independent variable, baseline scores as the

covariate, and postintervention scores as the dependent variable. An RM-ANOVA also could be used, using group as the independent

variable, and the baseline and postintervention scores as the dependent variables. Time of measurement would, in this case, be the with-

in-subjects factor.

Unadjusted
Means

Adjusted 
Means

No insurance 17.96 16.63

Private insurance 24.33 25.49

Public health insurance 18.87 18.05
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GLOSSARY
Adjusted means The mean values of the dependent variable for different groups, after removing the effects of covariates through

multiple regression or ANCOVA.

Analysis of covariance (ANCOVA) A statistical procedure used to test mean group differences on a dependent variable, while

controlling for one or more confounding variables, or a preintervention measure of the outcome variable (covariates).

Canonical analysis A multivariate statistical procedure for examining the relationship between two sets of variables, such as two

or more independent variables and two or more dependent variables.

Covariance A measure of the joint variance of two variables, computed by summing the cross products of each variable’s devia-

tion scores and dividing by degrees of freedom; when each covariance is divided by the standard deviations of the two variables,

the result is Pearson’s r.

Discriminant analysis A statistical procedure used to predict group membership or status on a categorical (nominal-level) vari-

able on the basis of two or more independent variables, using least-squares estimation.

Epsilon A correction factor for addressing violations of the sphericity assumption in repeated measures analyses; two formulas for

epsilon are the Greenhouse-Geisser epsilon and Huynh-Feldt epsilon.

Hotelling’s trace criterion A statistical index used in MANOVA and other multivariate tests to evaluate the significance of group

differences.

Mauchly’s test A test of the assumption of sphericity in repeated measures analyses.

Multivariate analysis of covariance (MANCOVA) A statistical procedure used to test the significance of differences between

the means of two or more groups on two or more dependent variables, after controlling for one or more covariate.

Multivariate analysis of variance (MANOVA) A statistical procedure used to test the significance of differences between the

means of two or more groups on two or more dependent variables, considered simultaneously.

Pillai’s trace criterion A statistical index used in MANOVA and other multivariate tests to assess the significance of group differ-

ences.

Stepdown analysis A supplementary analysis used following a significant MANOVA to test the relative importance of the de-

pendent variables in the analysis.

Structure coefficients Coefficients summarizing the correlation between the original variables in the analysis and scores on linear

composites (e.g., canonical variate scores or discriminant scores); also called loadings.

Type III sum of squares The most popular option for calculating sums of squares within the general linear model; this sum of

squares is calculated by comparing the full model, to the full model without the variable of interest and so it represents the addition-

al variability explained by adding the variable of interest.

Variance ratio An approach to evaluating the homogeneity of variance assumption in many statistical tests, involving computing

the ratio of variances for the groups with the highest and lowest variability; if the ratio is less than 2, homogeneity of variances can

be assumed; an alternative to Levene’s test.

Variance–covariance matrix A square matrix with the variances of variables on the diagonal and the covariance of pairs of vari-

ables on the off-diagonal.

Wilks’ lambda An index used in several multivariate analyses to test the significance of group differences; indicates the propor-

tion of variance in the dependent variable unaccounted for by predictors.
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Bartlett’s test of Wilks’ lambda ( ) In canonical analysis, a significance test used to evaluate whether an Rc (or a set of Rcs) is

significantly different from zero.

Box M test A statistical test used to test the homogeneity of a variance–covariance matrix, an assumption underlying several mul-

tivariate analyses.

Canonical correlation coefficient (Rc) The index summarizing the magnitude of the correlation between pairs of canonical vari-

ates in canonical analysis.

Canonical variate In canonical analysis, the composite formed by a linear combination of independent variables or dependent

variables.

Canonical weight In canonical analysis, the standardized weights associates with each independent and dependent variable, anal-

ogous to beta weights in multiple regression.

Ceiling effect The effect of having scores at or near the highest possible value, which can constrain the amount of upward change

possible and also tends to reduce variability in a variable.

Change score The score value obtained by subtracting scores on a variable at one point in time from scores on the same variable

measured at an earlier point in time.

Covariate A variable that is statistically controlled (held constant) in analysis of covariance; the covariate is typically an extrane-

ous, confounding influence on the dependent variable or a pretest measure of the dependent variable.

Discriminant function In discriminant analysis, a linear combination of independent variables formed to maximally separate

groups.

Discriminant score (D score) The predicted value from a discriminant analysis equation, used as a basis for classifying cases into

groups.

Floor effect The effect of having scores at or near the lowest possible value, which can constrain the amount of downward change

possible and also tends to reduce variability in a variable.

General linear model (GLM). A flexible statistical linear model that encompasses a broad class of statistical techniques (e.g., t

test, analysis of variance, multiple regression), and that uses the least squares criterion for estimating parameters.

Heterogeneity The degree to which objects are dissimilar with respect to some attribute (i.e., characterized by high variability).

Homogeneity of regression assumption In ANCOVA and MANCOVA, the assumption that the covariate has the same relation-

ship with the dependent variable in every group being compared.

Homogeneity of the variance–covariance matrix assumption The multivariate analog of the assumption of homogeneous vari-

ances for multiple dependent variables, evaluated through the Box M test.

Roy’s largest root criterion (Ray’s greatest characteristic root [gcr] criterion) A statistical index used in MANOVA and other

multivariate tests to evaluate the significance of group differences.

Loading Coefficients summarizing the correlation between original variables and scores on linear composites (e.g., factors,

canonical variate scores or discriminant scores); sometimes called structure coefficients.

Mahalanobis distance (D2) A statistic that is a generalized measure of the distance between groups; used in stepwise discriminant

analysis as a criterion for entering predictors.

MANCOVA See multivariate analysis of covariance.

MANOVA See multivariate analysis of variance.

Mixed design A design in which there is both a between-subjects factor (different people in different groups) and a within-sub-

jects factor (same people at different times or in different conditions).

Multivariate normal distribution A distribution of several variables such that each variable and all linear combinations of the

variables are normally distributed; multivariate normality is assumed for many multivariate statistical tests.

Net effect The effect of an independent variable on a dependent variable, after controlling for the effect of one or more covariate

through multiple regression or ANCOVA.
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Logistic regression (sometimes called logit analysis) is similar to multiple linear regression in that it analyzes

the relationship between multiple independent variables and a single dependent variable, and yields a predictive

equation. Logistic regression, however, is used when the dependent variable is categorical and so is similar to

discriminant analysis. Logistic regression, however, is based on an estimation procedure that has less restrictive

assumptions than techniques based on the general linear model (GLM), and is usually preferred to discriminant

analysis. Indeed, logistic regression is one of the more widely used types of statistical analysis among nurse re-

searchers.

TIP: Not all SPSS systems include a logistic regression program. The SPSS add-on Regression
module, which includes logistic regression, must be separately purchased. Check in the Analyze ➜
Regression menu to see if there is an option called Binary Logistic Regression.

BASIC CONCEPTS FOR LOGISTIC REGRESSION

This section provides an overview of some basic concepts that are important to understanding logistic regres-

sion. Computations are kept to a minimum, but a few are shown to communicate how logistic regression works.

Later sections describe tests of statistical inference associated with logistic regression, as well as assumptions

and requirements for this method of analysis.

Logistic Regression

Basic Concepts for Logistic Regression
Maximum Likelihood Estimation

Logistic Regression Models

The Odds Ratio in Logistic Regression

Classification in Logistic Regression

Predictor Variables in Logistic Regression
Continuous Predictors

Categorical Predictors

Interaction Terms

Entering Predictors in Logistic Regression

Significance Tests in Logistic Regression
Tests of the Overall Model and Model

Improvements

Tests of Individual Predictors

Other Issues in Logistic Regression
Classification Success

Effect Size

Sample Size

Relative Importance of Predictors

Assumptions in Logistic Regression

Problems Relating to Logistic Regression

Research Applications of Logistic Regression
The Uses of Logistic Regression

The Presentation of Logistic Regression

in Research Reports

Research Example
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Maximum Likelihood Estimation

Multiple regression estimates parameters using a least-squares criterion. The

unknown parameters, such as the intercept constant and regression coefficients, are

estimated by minimizing the sum of the squared deviations between the data and the

linear model.

In logistic regression, estimation of parameters is based on maximum 
likelihood estimation (MLE), a major alternative to least squares estimation.

Maximum likelihood estimators are ones that estimate the parameters that are most

likely to have generated the observed data. Maximum likelihood estimation can be

used in several multivariate statistical techniques, including factor analysis.

Least squares regression is a closed-form solution, which means that it is does

not arrive at a solution in a series of iterations. Maximum likelihood estimation, by

contrast, has to be solved by an iterative procedure that starts with an initial estimate

of what the parameters are likely to be.

The MLE algorithm then determines the direction and size of the change in the

logit coefficients that meet certain statistical criteria. The goal of MLE is to find the

best combination of predictors to maximize the likelihood of obtaining the observed

frequencies on the outcome variable. After the initial estimate, the residuals are tested

and a re-estimate is made with an improved function. The process is repeated, typically

about three to five times, until convergence is reached, that is, until the change in the

statistical criterion is no longer significant.

TIP: An excellent primer on maximum likelihood estimation is available
on the following Web site: http://statgen.iop.kcl.ac.uk/bgim/mle/sslike_1.html.

Logistic Regression Models

Logistic regression develops models for estimating the probability that an event

occurs. For example, we might be interested in modeling the factors that affect the

probability of being HIV positive; or the probability of a woman practicing breast

self-examination; or the probability of death occurring while in an intensive care

unit. Logistic regression is most often used to predict dichotomous outcomes such as

these, and in such situations is sometimes called binary (or binomial) logistic
regression. Logistic regression can also be used to model dependent variables that

have more than two categories, such as a prediction of whether a pregnancy would

end in a miscarriage, stillbirth, preterm birth, or full-term birth. When there are

multiple categories in the dependent variable, researchers use multinomial logistic
regression. This chapter focuses on binary logistic regression.

The grade point average (GPA) of nursing students in a graduate program,

using undergraduate GPA, verbal and quantitative GRE scores, and scores on an

achievement motivation scale played the role as predictors. The example used to

illustrate discriminant analysis was modified, using the same predictor variables to

predict a dichotomous outcome: completion versus noncompletion of graduate school.

We will use the dichotomous graduate school outcome again as an example of logistic

regression, but we will make a change to the motivation scores so that we can better

illustrate some features of logistic regression. Instead of using the original motivation

scores, we will substitute a dummy code to signify high motivation: Students with a
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score over 70 are coded 1 (highly motivated) and students with a score of 70 and

below are coded 0 (not highly motivated). Table 1 presents the data for the logistic

regression example.

Logistic regression converts the probability that an outcome will occur (e.g.,

the probability of completing the graduate program) into its odds. The odds of an

event are defined as the ratio of two probabilities: The probability of an event occur-

ring to the probability that it will not occur. For example, if 40% of all entering grad-

uate students completed the program, the odds would be as follows:

In a logistic regression analysis, the dependent variable is transformed to be

the natural log of the odds, which is called a logit (short for logistic probability unit).
As a result of the transformation, the dependent variable ranges from minus to plus

OddsCompleting �
Prob 1Completing 2

Prob 1Not completing 2 �
.40

.60
� .667

Logistic Regression

TABLE 1 Fictitious Data for Logistic Regression Analysis Predicting Graduate
School Completion

Independent (Predictor) Variables
Dependent

Variable

Student

Undergrad
GPA 
X1

GRE 
Verbal 

X2

GRE 
Quantitative 

X3

High 
Motivation* 

X4

Completion
Status** 

Y

1 3.4 600 540 1 1
2 3.1 510 480 0 1
3 3.7 650 710 1 1
4 3.2 530 450 0 0
5 3.5 610 500 1 1
6 2.9 540 620 0 0
7 3.3 530 510 1 1
8 2.9 540 600 0 0
9 3.4 550 580 1 0

10 3.2 700 630 0 1
11 3.7 630 700 1 1
12 3.0 480 490 1 1
13 3.1 530 520 0 0
14 3.7 580 610 0 1
15 3.9 710 660 1 1
16 3.5 500 480 1 1
17 3.1 490 510 0 0
18 2.9 560 540 0 0
19 3.2 550 590 0 0
20 3.6 600 550 0 1

*High motivation is coded 1 for high motivation, and 0 for low motivation.

**Completion status is coded 1 for completion of graduate program, and 0 for noncompletion.
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infinity. Maximum likelihood is then used to estimate the coefficients associated

with the independent variables, with the logit as a continuous dependent variable.

The logistic regression model can be written as follows:

where b0 � constant

k � number of independent (predictor) variables

b1 to bk � coefficients estimated from the data

X1 to Xk � values of the k predictor variables

In other words, the logit (log of the odds) is predicted from a weighted combination

of the independent variables, plus a constant. In our graduate school example, the

logistic regression equation, which we obtained through SPSS, is as follows:

The right-hand side of the logistic regression equation essentially takes the

same form as the equation for multiple regression. The dependent variable (logit) is

predicted as a combination of a constant, plus unstandardized regression coefficients

that are used to weight each predictor variable. The interpretation, however, is differ-

ent than in multiple regression because we are no longer predicting actual values of

the dependent variable. In logistic regression, a b coefficient can be interpreted as the

change in the log odds associated with a one-unit change in the associated indepen-

dent variable. For example, a b of 2.336 for X4 (high motivation) means that when

the variable changes from 0 to 1 (from not highly motivated to highly motivated), the

log odds of completing graduate school increases by 2.336. A b of 4.603 for X1

(undergraduate grades) means that when grade point average increases by one point

(e.g., from 2.0 to 3.0), the log odds of completing the program increases by 4.603.

The Odds Ratio in Logistic Regression

It is difficult to comprehend what the logistic regression equation means because we are

not accustomed to thinking in terms of log odds. However, we can transform the logistic

equation so that the left-hand expression is the odds rather than the log odds, as follows:

where e � the base of natural logarithms (approximately 2.7183)

Written to solve for the odds, the equation tells us that e raised to the power of,

for example, b4, is the factor by which the odds change when X4 increases by one

unit, after controlling for all other variables in the model. When the coefficient is

positive, the odds increase, and when the coefficient is negative, the odds decrease.

In our example, when X4 (high motivation) changes from 0 to 1 and all other predic-

tors are the same, the odds of completing the graduate program are increased by a

factor of about 10.0 (e2.336 � 10.337).

The factor by which the odds change is the odds ratio (OR). To fully convey

what the OR represents in the context of logistic regression, we must present the

Prob 1event 2
Prob 1no event 2 � eb0 � b1X1 � .  .  . � bk Xk

log c Prob 1completing 2
Prob 1not completing 2 d � �19.260 � 4.603X1 � .028X2 � .022X3 � 2.336X4

log c Prob 1event 2
Prob 1no event 2 d � b0 � b1X1 � . . . . bkXk
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logistic regression equation in yet another form, this time solving for the probability

of an event, as follows:

Written in this fashion, we can use the logistic equation to estimate the probability that

a particular student will complete the graduate program. To illustrate, suppose we had

a highly motivated student (X4 � 1) with an undergraduate grade point average of

3.0 and scores of 600 for both verbal GRE and quantitative GRE. Using the coeffi-

cients we presented earlier, the probability of this particular student completing the

graduate program would be as follows:

Prob (completing) � 0.6893

The estimated probability that this student will complete the program is, thus, 

.6893 and the estimated probability of not completing it is .3107 (i.e., 1 � .6893 �

.3107). The odds of completion for this student are then estimated as 2.2185

(i.e., .6893 � .3107 � 2.2185).

Suppose now that this same student had been classified as not highly motivated

(X4 � 0), but that all other independent variables stayed the same. Inserting 0 instead

of 1 for X4 in the previous formula, we would now estimate that the student’s proba-

bility of completing is .1767, and the probability of not completing is .8233. If the stu-

dent were not highly motivated, the odds of completion are .1767 � .8233 � .2146.

We can now calculate the odds ratio for the motivation predictor as follows:

By changing the value of motivation from 1 to 0 with all else constant, the odds

change from 2.2185 to .2146, and the odds ratio changes by a factor of 10.337. This

is the same value we obtained earlier by raising e to the power of 2.336, the value of

the logistic coefficient for the motivation variable X4. The OR provides an estimate

of the risk of the event occurring given one condition, versus the risk of it occurring

given a different condition. In our example, we would estimate that the odds of fin-

ishing graduate school are about 10 times greater if a student is highly motivated

than if he or she is not, with other variables controlled. (Sometimes odds ratios from

multiple logistic regression are called adjusted odds ratios because they represent

the odds ratios after controlling other factors.)

TIP: Logistic regression programs can be used to compute odds ratios
when there is only one predictor. (In SPSS, it may be recalled, the Crosstabs
procedure can also be used to calculate ORs.) Results from simple least-
squares regression are rarely reported in the literature, but ORs from
simple logistic regression are often reported. When more than one
predictor is used in binary logistic regression, the analysis is sometimes
called multiple logistic regression, analogous to multiple regression using
least-squares estimation.

Odds ratioX4
�

oddsIf Motivated

oddsIf Not Motivated

�
2.2185

.2146
� 10.337

Prob 1completing 2 �
e1�19.2602 � 14.6032 13.02 � 1.0282 16002 � 1.0222 16002 � 12.3362 112

1 � e1�19.2602 � 14.6032 13.02 � 1.0282 16002 � 1.0222 16002 � 12.3362 112

Prob 1event 2 �
eb0 � b1X1 � .  .  . � bk Xk

1 � eb0 � b1X1 � .  .  . � bk Xk
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Classification in Logistic Regression

As in discriminant analysis, logistic regression can be used to classify cases within

categories of the dependent variable, thereby providing a mechanism for evaluating the

predictive success of the model. For the purposes of classification, each person’s

predicted probability is computed based on the logistic regression equation, as we

illustrated in the previous section. By default, if Prob (event) is greater than .50, the case

is classified as a positive case. In the example we just worked through, the motivated

student with the specified GRE scores and undergraduate GPA would be classified as

completing the graduate program (probability � .689) but the unmotivated student

would be classified as a noncompleter (probability � .177).

Classification information for the 20 students whose data are shown in Table 1 is

presented in Table 2. This table shows the students’ actual completion status in the sec-

ond column. For example, the first student, who completed the graduate school

program, has a code of 1 (completed) for actual completion status. This student’s

predicted classification, shown next, is completed (1), which is correct. The predicted

(estimated) probability based on the logistic regression is shown in the next column.

The first student’s predicted probability of completion is quite high—.98. The asterisks

in the column for predicted completion status indicate that there were four misclassi-

fications: Students 2 and 12 actually finished graduate school but were predicted to be

noncompleters, while students 4 and 9 failed to complete the program but were

predicted to be completers. Overall, 80.0% of the 20 cases were correctly classified.

Logistic Regression

TABLE 2 Predicting Graduate School Completion 
Through Logistic Regression

Student

Actual Completion
Status 1 � Completed
0 � Did not complete

Predicted Status 
1 � Completed 

0 � Did not complete

Estimated
Probability 

of Completing

1 1 1 .98
2 1 0* .27
3 1 1 .95
4 0 1* .66
5 1 1 .99
6 0 0 .02
7 1 1 .90
8 0 0 .02
9 0 1* .84

10 1 1 .83
11 1 1 .94
12 1 0* .45
13 0 0 .21
14 1 1 .71
15 1 1 .99
16 1 1 .95
17 0 0 .10
18 0 0 .14
19 0 0 .14
20 1 1 .91

*Misclassification
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TIP: The estimated probabilities shown in the fourth column of Table 2
were obtained in SPSS through the Save feature within the logistic
regression program. When you instruct the program to save predicted
probabilities (or predicted group membership), the values are added as a
new variable to the end of the data file for each participant.

In some situations, particularly if you have a large sample, it is a good idea to

develop the logistic regression model with a random subset of participants. The clas-

sification accuracy of the logistic regression equation can then be tested on both the

original random subset used to generate the equation, and on the remaining unselected

subset for cross-validation purposes. If the percent correctly classified is about the

same in the two subsets and is reasonably high, greater confidence can be placed in

classifying other people from the same population.

We illustrate this approach using data that will be used throughout this chapter.

In this example, we will predict whether a woman has had a tubal ligation (coded

1 for yes and 0 for no). The four predictors include the woman’s age, number of live

births, educational attainment, and whether or not any of her children have any type

of disability. In the full sample, there were 3,960 women. We selected a random sub-

set of 2,500 women for building the logistic regression model. Classification of the

remaining (unselected) subset was then tested.

Classification results are shown in Figure 1. With the original random subset

of 2,363 cases with complete data (the selected cases), 255 women who actually had

a tubal ligation (52.3%) were classified as having one, and 1,265 women who did not

have a tubal ligation (67.5%) were classified as not having one. The overall rate of

successful classification was 64.3%, which is not a particularly strong success rate.

Yet, the logistic regression equation was equally successful in classifying the 1,401

unselected cases: 65.2% of unselected cases were correctly classified. We can con-

clude, at least, that the parameter estimates are stable.

Logistic Regression

aSelected cases random subset EQ 1
bUnselected cases random subset NE 1
cSome of the unselected cases are not classified due to either missing values in the independent variables or
categorical variables with values out of the range of the selected cases.

dThe cut value is .500

Classification Tabled

Observed

Predicted

Selected Casesa Unselected Casesb,c

Ever Had 
Tubal Ligation

Percentage
Correct

Ever Had 
Tubal Ligation

Percentage
CorrectNo (0) Yes (1) No (0) Yes (1)

Step 1 Ever Had
Tubal
Ligation

No (0) 1265 233 84.4 759 126 85.8

Yes (1) 610 255 29.5 362 154 29.8

Overall
Percentage

64.3 65.2

FIGURE 1 SPSS printout of a classification table for selected and unselected cases in logistic regression: 
tubal ligation example.
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In practical applications, researchers might want to establish a different rule

for classifying probabilities if the consequences of making a mistake in one direction

are more severe than misclassification in the other direction. For example, a graduate

program administrator might be more willing to accept students with a risk of not

completing than to reject students who would have successfully finished. In such a

situation, a probability value other than .50 can be used for classification. Computer

programs such as SPSS allow you to establish classification probabilities. In the

example shown in Figure 1, footnote d indicates that the cut value on the predicted

probabilities was .500, but different cut values can be established.

TIP: In SPSS, you can request a classification plot that generates a
histogram of estimated probabilities. Predicted probability of the depen-
dent variable is plotted on the horizontal (X) axis, ranging from .00 to
1.00. Frequency of cases with the predicted probability is plotted on the
vertical (Y) axis. The ideal plot is essentially U shaped, with high
frequencies for the two categories of the dependent variable clustering at
their respective ends of the plot. The histogram is sometimes useful for
making decisions about whether a probability value other than .50 would
be better in classifying cases.

Example of classification in logistic regression:

Shishani (2008) used logistic regression to predict the need of chronically ill adults

for education on self-medication. Need for education was predicted on the basis of

patients’ knowledge about the benefits and side effects of medications, and knowl-

edge about how to manage side effects. The model was successful in classifying

82% of the patients.

PREDICTOR VARIABLES IN LOGISTIC REGRESSION

As previously indicated, the dependent variable in binary logistic regression is a

dichotomous variable. Usually this variable is coded 1 to represent an event (e.g., had

a tubal ligation) or the presence of a characteristic (e.g., is hypertensive), and is

coded 0 to represent the absence of the event or characteristic (no tubal ligation, no

hypertension). Binary logistic regression in SPSS by default predicts the higher of

the two code categories of the dependent variable, using the lower one as the refer-

ence category.

In this section we focus on options for predictor variables. In brief, predic-

tors can be continuous variables, categorical variables, interaction terms, and

combinations of all of these. Although there are no strict limits to the number of

predictors that can be included, in practice it is best to achieve a parsimonious

model with strong predictive power using a small set of good predictors. A large

number of predictors increases the risk of a Type I error and can result in problems

with multicollinearity. The selection of predictors for a logistic regression model

should be judicious, based on a theoretical framework or a solid foundation of

existing evidence.

TIP: In SPSS, the independent variables (predictors) are entered into a
slot called “Covariates.”

Logistic Regression
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Continuous Predictors

As in multiple regression, predictors in logistic regression can be continuous variables—

that is, interval- or ratio-level variables or ordinal values that approach interval charac-

teristics. In our example of predicting graduate school completion, GRE scores and

undergraduate GPA are continuous variables.

In the tubal ligation example, the woman’s age and number of live births are con-

tinuous variables. As we shall see in a subsequent section, the odds ratio for number of

live births is 1.323. This means that for every additional birth, the odds of having a

tubal ligation increased by about 32%, with everything else in the model held constant.

Categorical Predictors

The nominal-level variables can be used as predictors in multiple regression, and this

is also true in logistic regression. Dummy-coded variables, also called indicator
variables, are a common method of representing a dichotomous predictor, such as

male (1) versus female (0) or smokes cigarettes (1) versus does not smoke cigarettes

(0). In our example of predicting whether a woman would opt for a tubal ligation,

there is one such dummy variable—whether the woman has any children with a dis-

ability (1) or has no children with a disability (0).

The procedures for creating a series of dummy variables for multicategory

nominal-level variables such as race/ethnicity or marital status. For example, if there

were three marital status groups (e.g., currently married, never married, and previ-

ously married), two new variables (the number of categories, minus 1) would have to

be created to represent marital status as a predictor in the regression equation. One

variable might be currently married or not, and the other might be never married or

not. Previously married people in this case would be the reference category. In the

SPSS logistic regression program, it is not necessary to create new variables prior to

the analysis—the program can do this for you.

In our tubal ligation example, one of the predictors is the woman’s educational

attainment (edstat), which in this dataset is a three-category variable: no high

school diploma (1), high school diploma (2), or college degree (3). In SPSS, there

are numerous options for setting up contrasts with such multicategory variables.

The default is indicator coding (dummy coding), using the last category as the ref-

erence category. If educational attainment is declared as a categorical variable, the

logistic regression program would create two new variables: no diploma (1) versus

all others (0), and diploma (1) versus all others (0). These would be named edstat(1)
and edstat(2), respectively, on some panels of the output. Those with a college

degree, the reference group, would be zero on both these new variables. The SPSS

output displays these codes and the group sizes, as shown in the first panel of

Figure 2.

With indicator coding, the coefficients for the new variables represent the ef-

fect of each category compared to the reference category. For example, the logistic

coefficient for edstat(1) represents the change in the log odds for not completing

high school compared to having a college degree, and the coefficient for edstat(2) is

the change in the log odds for having a high school diploma versus having a college

degree.

The SPSS logistic regression program will automatically create a series of new

variables for any original variable declared as categorical, and several contrast

options are available. For example, if you want to compare the effect of each category

to the average effect of all categories, you would select deviation coding rather than

indicator coding. As shown in the second panel of Figure 2, deviation contrasts
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involve assigning the code of �1 to the last category for each newly created variable.

When deviation coding is used, the logistic coefficients indicate how much better or

worse each category is in comparison with average effects for all categories. SPSS

offers seven different types of categorical contrast options, but indicator and devia-

tion coding are the ones most often used.

TIP: In SPSS, there is a separate dialog box for coding categorical
variables, accessed through the Categorical pushbutton on the main dialog
box. You first identify which variables are categorical, and then indicate
whether you want the first or last category to be the reference group, and
which type of contrast coding is desired. If you have an original variable
in your dataset that is already dummy coded, do not declare it as a
categorical variable.

Interaction Terms

When a variable is entered into a logistic model, the assumption is that the effect of

the variable on the outcome is the same for all values of other variables in the

model. In our graduate school completion example, the model implies that being

highly motivated has the same effect on program completion at all values of GRE

scores and undergraduate grades. If this is not the case, there is an interaction. In

logistic regression, as in least-squares regression, interaction terms can be added to

the model.

For continuous predictors, an interaction term can be created as the prod-

uct of two existing variables. (In SPSS, this can be achieved in the main dialog

box.) For categorical variables, multiplication can be used directly to create an

Logistic Regression

A Indicator Coding of Educational Status

Categorical Variables Codings

Frequency

Parameter Coding

(1) (2)

Educational
Status

No HS diploma 1725 1.000 .000

HS diploma 1347 .000 1.000

AA or BA degree 692 .000 .000

Frequency

Parameter Coding

(1) (2)

Educational
Status

No HS diploma 1725 1.000 .000

HS diploma 1347 .000 1.000

AA or BA degree 692 �1.000 �1.000

B Deviation Coding of Educational Status

Categorical Variables Codings

FIGURE 2 SPSS printout of two alternative codings for categorical variables in
logistic regression.
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interaction term if the variables in the original dataset were dichotomous dum-

mies. If you use the Define Categorical Variables option to create new variables

within the logistic regression program, care is needed in setting up the interac-

tion terms. We strongly recommend further reading on this topic if interaction

terms are considered necessary (e.g., Norus̆is, 2008; Hosmer & Lemeshow,

2000; Tabachnick & Fidell, 2007).

Example of different predictor types in logistic regression:

McInerney and a team of coresearchers (2007) studied factors associated with

antituberculosis medication adherence in South Africa. Their final model included

continuous variables (e.g., number of days with no food, number of missed clinic

appointments) and categorical variables (sex). The researchers also tested the

interaction between days without food and missed appointments, and the interac-

tion term was statistically significant: The effect of days without anything to eat on

medication adherence was different for those with and without missed clinic

appointments.

Entering Predictors in Logistic Regression

As with multiple regression and discriminant analysis, there are alternative

methods of entering predictors into the logistic regression equation. In our gradu-

ate school example, we used simultaneous (standard) entry of all predictors in one

block.

Hierarchical (also called sequential) logistic regression is another important

option. In hierarchical logistic regression, researchers specify the order of entry of

variables into the model, and can evaluate how much the prediction improves at

each step.

Stepwise entry of predictors is also available in logistic regression. Stepwise

regression is considered appropriate only for exploratory work because model build-

ing relies on statistical rather than theoretical criteria. There are several approaches

to doing a stepwise logistic regression, using different statistical criteria to select

predictors. Variables can either be entered into the model on a step-by-step basis

(forward stepwise), or can be removed from the model in successive steps (backward

stepwise). Forward selection is the usual option, which involves adding variables one

at a time in an order that maximizes a statistical criterion. Backward selection starts

with all variables and deletes one at a time, in the order they are least desirable ac-

cording to a statistical criterion.

TIP: The stepwise variants available in SPSS include forward condi-
tional, forward LR (which stands for likelihood ratio), forward Wald,
and three corresponding backward options. The LR options are most
often preferred.

Confirmation of the parameter estimates achieved in stepwise regression is

highly desirable, to rule out serendipitous results. Thus, when stepwise methods are

used, it is advisable to divide the sample into subsets and run the logistic regression

with both subsets to assess whether similar parameter estimates are achieved. If they

are, greater confidence can be placed in the logistic regression model. Of course,

such a cross-validation strategy requires a large sample.
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Example of stepwise entry of predictors:

Mak and colleagues (2008) used logistic regression to predict the incidence of lym-

phedema among patients with breast cancer who were undergoing axillary lymph

dissection. Predictors included clinical, demographic, and lifestyle risk factors. The

researchers first identified significant predictors using stepwise logistic regression.

Then they re-ran the model using forced entry of several demographic variables

(e.g., age, body mass index) to ensure that these variables were statistically adjusted

in the final model.

SIGNIFICANCE TESTS IN LOGISTIC REGRESSION

As with most analytic procedures described in this book, logistic regression is most

often used to estimate population parameters, not merely to describe a sample. A

variety of inferential statistics can be used to evaluate the reliability of different

aspects of the logistic regression results.

Tests of the Overall Model and Model Improvements

Researchers want to know whether their overall model is reliable—whether the set

of predictors, taken as a whole, are significantly better than chance in predicting the

probability of the outcome event. The null hypothesis is that the predictors, as a set,

are unrelated to the outcome variable. This is analogous to the null hypothesis in

least-squares multiple regression that R2 is zero.

Assessing the goodness of fit of a logistic regression model can be confusing

because there are several different tests, and different authors use different names for

the tests. Another potential source of confusion is that some tests indicate goodness

of fit by a significant result, and others indicate goodness of fit by a nonsignificant

result. Two of the more widely used overall tests are discussed in this section.

LIKELIHOOD RATIO TESTS One basic omnibus test in logistic regression involves

comparing the model with a set of predictors to a model without any predictors. A two-

step approach is used, and in the first step (called Block 0 in SPSS) parameters are

estimated simply on the basis of how the outcome variable is distributed. Figure 3 pre-

sents three panels of SPSS output for the null model (sometimes called the constant-
only model) in our example of predicting a woman’s decision to have a tubal ligation.

In the classification table in Panel B, we see that 1,381 women in this sample had had

a tubal ligation and 2,383 had not had one, which means that 36.7% of the sample had

had the procedure and 63.3% had not. In the null model, in the absence of any further

information, the prediction is that everyone will have the outcome with the highest

prevalence— in this case, not having a tubal ligation. Thus, this null model is correct

63.3% of the time, because 63.3% of the women had not had a tubal ligation.

Panel C of Figure 3 presents the logistic regression equation for the null

model, which is of little inherent interest. We can see here, however, that the odds

ratio for the null model is .580—the value shown in the cell labeled Exp(B) for expo-

nentiation of the regression coefficient b. We can easily compute the odds ratio in the

null model as the odds of having a tubal ligation (1,381 � 3,764 � .3669) divided by

the odds of not having a tubal ligation (2,383 � 3,764 � .6331), which is .580, the

value shown in the output as Exp(B).

An important index in logistic regression is called the likelihood index, which

is the probability of the observed results, given the parameters estimated from the

analysis. Like any probability, the likelihood index varies from 0 to 1. If the model
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fits the data perfectly, the likelihood is 1.00. The likelihood index is almost always a

small decimal number, and so it is customary to transform the index by multiplying

�2 times the log of the likelihood. (The log likelihood varies from 0 to minus infinity

and is negative because the log of any number less than 1 is negative.) The trans-

formed index (�2LL) is a small number when the model fit is good; when the model

is perfect, �2LL equals zero. Maximum likelihood estimation seeks to maximize

likelihood (i.e., minimize �2LL), and iterations stop when likelihood does not

change significantly. In our example, Panel A shows that �2LL was 4948.03 in the

null model, and that two iterations were required (footnote c).

The overall model with predictors can be tested against the null model by

computing the difference in their log likelihoods. This likelihood ratio test is some-

times called a chi-square goodness-of-fit test because �2LL has approximately a

chi-square distribution. The likelihood ratio statistic can be defined as follows:

x2 � (�2LL [reduced model]) � (�2LL [larger model])

Logistic Regression

Logistic Regression
Block 0: Beginning Block

A Iteration Historya,b,c

aConstant is included in the model.
bInitial �2 Log Likelihood: 4948.030
cEstimation terminated at iteration number 2 because log-likelihood
decreased by less than .010%.

B Classification Tablea,b

C Variables in the Equation

Iteration

�2 Log Likelihood Coefficients

Constant

Step 0 1 4948.181 �.532

2 4948.030 �.546

aConstant is included in the model.
bThe cut value is .500

Observed

Predicted

Ever Had Tubal Ligation

No (0) Yes (1)
Percentage

Correct

Step 0 Ever Had
Tubal
Ligation

No (0) 2383 0 100.0

Yes (1) 1381 0 .0

Overall Percentage 63.3

B S.E. Wald df Sig. Exp(B)

Step 0 Constant �.546 .034 260.200 1 .000 .580

FIGURE 3 SPSS printout for the null model (block 0) in logistic regression: tubal ligation
example.
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In the context of our discussion about an overall test, the “reduced model” is

the null model and the “larger model” is the model predicting tubal ligation with the

full set of predictors (the woman’s age, number of births, educational status, and

having a child with a disability). This likelihood ratio test would be used to test the

null hypothesis that all the b1 to bk coefficients for the set of predictors are zero. In

our tubal ligation example, the relevant values of �2LL, as shown in Panel A of

Figure 3 and Panel B of Figure 4, are as follows:

�2LL, null model with only a constant � 4948.030

�2LL, full model � 4497.463

Model chi-square � 450.567

Degrees of freedom for the likelihood ratio test are the difference between df
for the larger and the reduced models. The null model has 1 df (for the constant) and

the larger model has 6 df (one for each individual effect and the constant). In this

example, the model chi-square is evaluated with df � 5. As shown in Panel A of

Figure 4, the omnibus test of the full model for predicting the odds of having a tubal

ligation is statistically significant at p � .001. We can reject the null hypothesis that

all of the predictor effects are zero.

Panel A of Figure 4 shows three chi-square values (Step, Block, and

Model), and in this case they are all the same, 450.567. This is because all the pre-

dictors were added in one block via simultaneous entry. (This is shown as Method �
Enter near the top of the SPSS output.) When predictors are entered in blocks via

hierarchical entry, or in steps via stepwise entry, the likelihood ratio test can be used

to evaluate the significance of improvement to �2LL with successive entry of

Logistic Regression

Logistic Regression
Block 1: Method � Enter

A Omnibus Tests of Model Coefficients

Chi-Square df Sig.

Step 1 Step 450.567 5 .000

Block 450.567 5 .000

Model 450.567 5 .000

B Model Summary

Step
�2 Log

Likelihood

Cox & Snell 
R Square

Nagelkerke
R Square

1 4497.463a .113 .154

Step Chi-Square df Sig.

1 151.747 8 .001

aEstimation terminated at iteration number 5 because
parameter estimates changed by less than .001.

C Hosmer-Lemeshow Test

FIGURE 4 SPSS printout for tests of the overall model in logistic regression: tubal
ligation example.
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predictors. In this case, the “reduced model” in the x2 formula for the likelihood

ratio test is the model without the new predictors and the “larger model” is the

model with the larger set of predictors, including new ones. The improvement

likelihood ratio test, which tests the null hypothesis that the coefficient for the

variable added at the last step is zero, is comparable to the F-change test in multi-

ple regression.

As an example, suppose we had used hierarchical entry to predict tubal

ligation. In the first block, we use age, number of births, and educational status as

predictors. The omnibus test of this initial model, shown in panel A of Figure 5,

yields a chi-square value of 436.117. With 4 df, this is significant at p � .001. In the

next block we enter the variable for whether or not the woman has a child with a

disability. Panel B of Figure 5 shows that the chi-square for this block is 14.451,

which, with 1 df, is also significant at p � .001. This test tells us that adding the vari-

able for having a child with a disability significantly improved the predictive power

of the logistic regression model. The model chi-square in the last row of panel B is

450.567, the same value we obtained earlier when all predictors were entered simul-

taneously. Thus, the likelihood ratio test is a versatile test that can be used to evalu-

ate the entire model and model improvement when predictors are added.

THE HOSMER-LEMESHOW TEST To test the overall model, the likelihood ratio

test compares the full model to the null model. An alternative is to compare the

prediction model to a hypothetically “perfect” model (Tabachnick & Fidell, 2007).

The perfect model is one that contains the exact set of predictors needed to dupli-

cate the observed frequencies in the dependent variable. The full model can be

tested against the perfect model in several ways, but the various approaches all

involve computing differences between observed and expected frequencies. The

test of this type most often used is called the Hosmer-Lemeshow test, and is avail-

able as an option in SPSS.

Logistic Regression

Logistic Regression
Block 1: Method � Enter

A Omnibus Tests of Model Coefficients

Chi-Square df Sig.

Step 1 Step 436.117 4 .000

Block 436.117 4 .000

Model 436.117 4 .000

Chi-Square df Sig.

Step 1 Step 14.451 1 .000

Block 14.451 1 .000

Model 450.567 5 .000

Block 2: Method � Enter

B Omnibus Tests of Model Coefficients

FIGURE 5 SPSS printout for model tests in hierarchical logistic regression: tubal ligation
example.
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The Hosmer-Lemeshow test involves ordering cases based on their predicted

probability values on the dependent variable. Then the cases are divided into

10 groups, which are sometimes called deciles of risk. The first group or decile

has an estimated probability on the outcome variable below .10, while those in the

10th decile have estimated probabilities of .90 or higher. As an example, the first stu-

dent in Table 2, with an estimated probability of .98 of completing graduate school,

would be in the 10th decile; the second student, with an estimated probability of .27,

would be in the 3rd decile. The frequency of cases in each decile, for those with

a code of 1 versus 0 on the outcome variable, can be arrayed in a 2 � 10 contin-

gency table.

The Hosmer-Lemeshow test evaluates how well observed frequencies versus

expected frequencies agree over the entire range of probability values. The expected

frequencies are obtained from the model. If the model is a good one, then most of the

participants with an actual outcome coded 1 are in the higher deciles of risk, and

most with an actual outcome coded 0 are in the lower deciles.

The Hosmer-Lemeshow test is a chi-square test that computes the difference be-

tween observed (O) and expected (E) frequencies for each cell of the 2 � 10 matrix. The

chi-square statistic is the sum of the (O – E )2/E values for the 20 cells. With this test, a

nonsignificant chi-square is desired. A nonsignificant result indicates that the model

being tested is not reliably different from the perfect model. In other words, nonsignifi-

cance supports the inference that the model adequately duplicates the observed frequen-

cies at the various levels of the outcome.

Panel C of Figure 4 shows that in our tubal ligation example, the Hosmer-

Lemeshow chi-square value was 151.747, which was statistically significant

(p � .001). This suggests that the model is significantly different from a hypotheti-

cally perfect model, and is not a good fit to the data. Given the earlier significant

results for the likelihood ratio test, this result seems anomalous. One of the problems

with the Hosmer-Lemeshow test is that the value of the statistic is sensitive to sam-

ple size. With a large sample, as we have in the tubal ligation example, the test statis-

tic can be large even when the model fits well, because the value of chi-square is pro-

portional to sample size.

Having too small a sample is also problematic for the Hosmer-Lemeshow test,

and it is sometimes recommended that the test not be used if the sample size is less

than 400. Also, the expected number of events in most of the 20 (2 � 10) groups

should exceed five, and no group should have an expected value less than 1. The test

may also not be appropriate if you have a small number of categorical predictors.

The statistic cannot be used when there are a small number of distinct predicted

probabilities, because in this situation it would not be possible to create the deciles of

risk. Thus, although this test is often advocated as the appropriate test of model fit in

logistic regression, Norušis (2008) has noted that “the Hosmer-Lemeshow statistic

provides useful information about the calibration of the model, but it must be inter-

preted with care”.

Example of the Hosmer-Lemeshow test:

Dougherty and Hunziker (2009) used logistic regression to study predictors of

implantable cardioverter defibrillator (ICD) shocks during the first year after

implantation. Their predictive model included three significant predictors: history of

COPD, history of congestive heart failure, and ventricular tachycardia at the time of

ICD implant. The Hosmer-Lemeshow test indicated that the model was a good fit to

the data (x2 � 0.52, p � .77).
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Tests of Individual Predictors

It is also possible to test the significance of individual predictor variables in the

logistic regression model, just as the t-statistic is used to test the significance of indi-

vidual predictors in multiple regression. The statistic that is often used in logistic

regression is the Wald statistic, which when squared is distributed as a chi-square.

When the predictor variable has 1 degree of freedom, the squared Wald statistic is as

follows:

where b � the logistic regression coefficient

SEb � the standard error of b

Figure 6 shows the SPSS parameter estimates in the logistic regression model for

predicting tubal ligation with all four predictors. The logistic regression equation

for predicting the logit for a woman’s decision to have a tubal ligation is the constant 

(�4.087) plus the b coefficients times the value of each respective predictor. The output

shows the Wald statistic associated with each predictor variable. The value for the first

predictor, number of births, is 118.522, which is highly significant at p � .001.

A Wald statistic is computed both for the overall educational attainment variable

(2.885) and for each of the two education categories for which indicator variables were

created. For the contrast of not having a high school degree compared to having a col-

lege education (edstat1), the Wald statistic is 1.634, which is not significant at p � .201.

In fact, none of the education effects is statistically significant. This suggests the possi-

bility of dropping educational attainment from the model, unless there is a reason for

wanting to ensure that educational attainment is statistically controlled.

All remaining predictors in this model are statistically significant at p � .001.

Odds ratios are also shown in this panel under the heading Exp(B), together with the

95% CI around the odds ratio. The results suggest that in this population of mothers,

having a child with a disability increases the odds of having had a tubal ligation by

40.6%, with other factors controlled. Older women and those who had a larger num-

ber of live births are also significantly more likely to have had a tubal ligation.

c b

SEb

d 2

Logistic Regression

Variables in the Equation

B S.E. Wald df Sig. Exp(B)

95.0% CI for EXP(B)

Lower Upper

Step 1a Births .277 .025 118.522 1 .000 1.320 1.255 1.387

Age .074 .006 180.240 1 .000 1.077 1.065 1.088

Edstat 2.885 2 .236

Edstat(1) .133 .104 1.634 1 .201 1.142 .932 1.401

Edstat(2) .179 .106 2.870 1 .090 1.196 .972 1.472

Chdisabl .341 .089 14.573 1 .000 1.406 1.180 1.674

Constant �4.087 .212 370.165 1 .000 .017

aVariable(s) entered on step 1: BIRTHS, AGE, EDSTAT, CHDISABL

FIGURE 6 SPSS printout for parameter estimates in the logistic regression equation.
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The Wald statistic has some problematic features that should be considered

in deciding how to evaluate individual predictors. When the absolute value of the b
coefficient is large, the standard error is too large, which in turn produces a Wald

statistic that is small and can lead to Type II errors. If the Wald statistic leads you

to retain the null hypothesis for a coefficient that is large, an alternative way to test

the predictor is to enter that variable in a later block and to use the improvement

likelihood ratio test to determine the significance of its contribution. In fact, the

likelihood-ratio improvement test is considered superior to the Wald test under

most circumstances (Tabachnick & Fidell, 2007), but it does require more effort.

OTHER ISSUES IN LOGISTIC REGRESSION

This section provides some brief comments about a few additional topics relating to

logistic regression. Advanced textbooks such as those by Tabachnick and Fidell

(2007) or Hosmer and Lemeshow (2000) should be consulted for further guidance

on this complex statistical procedure.

Classification Success

One method of assessing the success of the logistic regression model is to evaluate

its ability to correctly predict the outcome for sample members whose outcome is

known. Models that are highly significant (i.e., statistically reliable) are not neces-

sarily good at classifying cases, especially if the sample size is large.

We saw earlier in our tubal ligation example that even in the absence of any

predictors, 63.3% of the cases would be correctly classified simply by classifying all

women as not having had the procedure (Figure 3). The full model with all sample

members resulted in correctly classifying 65.1% of the cases, as shown in Figure 7,

which is a modest 1.8 percentage point improvement.

In predicting important clinical outcomes, an improvement this small may

seem discouraging. However, even though the overall improvement was modest, the

improvement was substantial for predicting who would have a tubal ligation. In the

null model, 100% of those who had had the procedure were misclassified, whereas

in the new model, only 68.5% were misclassified (100% � 31.5% � 68.5%). This is

a very large improvement and would be noteworthy if the outcome were a clinically

Logistic Regression

Classification Tablea

aThe cut value is .500.

Predicted

Ever Had Tubal Ligation

Observed No (0) Yes (1)
Percentage

Correct

Step 1 Ever Had Tubal
Ligation

No (0)
Yes (1)

2017
946

366
435

84.6
31.5

Overall
Percentage

65.1

FIGURE 7 SPSS printout for classification table with full model.
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vital outcome, such as mortality or presence of a disease. The cost, of course, is a

higher percentage of misclassifications for those without the targeted outcome, but in

some situations, this cost might be acceptable.

Effect Size

Researchers often want to know the magnitude of the relationship between the out-

come and the set of predictors in the model. Statisticians have put considerable effort

into developing an effect size index for logistic regression that is analogous to R2 in

multiple regression, but there is no widely accepted overall effect size index for

logistic regression. The main problem is that R2 in multiple regression can be inter-

preted as the percentage of variance in the dependent variable explained by the

predictors. The variance of a dichotomous outcome variable, however, depends on

its distribution. For example, variance is at a maximum for a 50–50 split on the out-

come, and the more uneven the split, the smaller the variance. Despite difficulties in

achieving a good analog to least squares-based R2, several logistic R-squared mea-

sures have been proposed, and these are sometimes called pseudo R2. These indexes

should be reported as approximations to an R2 obtained in least-squares regression

rather than as the percentage of variance explained.

One effect size index in logistic regression is the Cox and Snell R2. This statis-

tic uses a formula that involves the ratio of likelihood indexes for the null model and

the model being tested. This index is computed in SPSS, but is considered problematic

because it cannot achieve a maximum value of 1.00. A second statistic, called the

Nagelkerke R2 is a modification that was introduced so that the value could achieve

the full range from .00 to 1.00. Panel B of Figure 4 indicates that in our tubal ligation

example, the Cox and Snell R2 was .113 and the Nagelkerke R2 was .154. The

Nagelkerke R2 is the most frequently reported of the pseudo R2 indexes.

Another effect size option is to save the predicted probabilities for each case

from the logistic regression analysis and to use these values in bivariate analyses that

yield effect size statistics (Tabachnick & Fidell, 2007). For example, a correlation

coefficient (r) can be computed between the predicted probability value and the

actual outcome, and r can be interpreted as the effect size index. As another alterna-

tive, a t test can be run using the dichotomous outcome variable as the grouping

variable and predicted probabilities as the dependent variable. The analysis could

then be used to compute the effect size index d.

TIP: For individual predictors, the odds ratio provides a direct measure of
effect size. The closer the odds ratio is to 1, the smaller the effect. The
odds ratio is often used as the measure of effect size in meta-analyses.

Sample Size

As was true for least-squares regression, there are two ways of approaching sample

size needs for logistic regression. One involves the ratio of cases to predictors, and

the other involves a power analysis.

To achieve stability in the parameter estimates, there should be a sufficient num-

ber of cases for each predictor in the model, including any interaction terms.

Recommendations range from 10 to 20 cases per predictor. We would suggest at least

15 cases per predictor, but 20 or more is preferable. Maximum likelihood estimation re-

lies on large-sample asymptotic normality, which means that the stability of the estimates

declines when the sample size is inadequate in relation to the number of predictors.
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Power analysis in logistic regression is complex. In multiple regression, we

used R2 as the effect size index coupled with number of predictors to estimate sam-

ple size needs. As we have seen, however, there is no straightforward analog of R2 in

logistic regression. Moreover, with a dichotomous outcome variable as well as

dichotomous predictors, power varies in relation to how close the distributions are to

a 50–50 split. We were unable to locate any Internet resource offering free power

analysis software for logistic regression (although Internet resources are constantly

being added). Several commercial vendors do, however, offer such tools.

As a crude approximation of sample size needs, one could estimate sample

size based on the relationship between the outcome and a single predictor variable—

preferably, to be conservative, an important predictor that is expected to have the

most modest relationship to the outcome. Another crude estimate could be obtained

by using the procedures described in the previous section of using estimated proba-

bilities to compute a d or r statistic. While these approaches are not ideal, they are

likely to be better at helping to avoid a Type II error than doing nothing at all to esti-

mate sample size needs empirically.

TIP: There are formulas for converting odds ratios into Cohen’s d and 
eta-squared, which can then be used in power analyses. These formulas are
described in Tabachnick and Fidell (2007) and Lipsey and Wilson (2001).

Relative Importance of Predictors

The problems of understanding the relative importance of predictors in multiple

regression apply equally to logistic regression. Making it even more difficult, neither

beta weights nor semipartial correlation coefficients are generated in most logistic

regression programs.

Researchers most often use the odds ratio to draw conclusions about the

importance of predictors in a logistic equation. Statistically significant predictors

that affect the odds of an outcome the most are interpreted as most important. Using

this approach provides some insights for predictors that are categorical, but is less

useful with continuous variables because they are in different measurement units.

Another solution is to compute standardized regression coefficients, which

correspond to beta weights in least-squares regression. Most computer programs

do not offer the calculation of standardized coefficients as an option, but one

approach is to standardize predictors before the analyze and use the z scores rather

than original scores in the logistic regression analysis. This approach results in

parameter estimates that are standardized so that b coefficients can be more readily

compared.

Assumptions in Logistic Regression

Logistic regression has gained some of its popularity because it avoids the restrictive

assumptions of least-squares regression. For example, logistic regression does not

assume a linear relationship between the dependent variable and the predictors, and

the dependent variable does not have to be normally distributed. Moreover, there is no

homogeneity of variance assumption. There are numerous examples in the nursing

literature in which the researchers, facing a violation of one or more of these assump-

tions, opted to use logistic regression by dichotomizing a continuous outcome

variable.

Logistic Regression
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Example of dichotomizing a continuous outcome:

Bryanton, Gagnon, Hatem, and Johnston (2008) studied predictors of parenting self-

efficacy shortly after birth and then 1 month postpartum. Their dependent variable,

parenting self-efficacy, was measured using a 25-item scale and thus yielded interval-

level data. They found, however, that the scores were severely negatively skewed, so

they opted to dichotomize the outcome variable and use logistic rather than least-

squares regression.

There are, nevertheless, a few assumptions in logistic regression. First, the

error terms are assumed to be independent, which means that independent sampling

is assumed. Logistic regression is not appropriate for within-subjects designs or with

correlated samples such as in matched-pair designs.

A second assumption concerns linearity. Logistic regression does not require a

linear relationship between the independent variables and the dependent variable,

but it does assume a linear relationship between continuous predictors and the

log odds of the dependent variable. When this assumption is violated, the risk of a

Type II error (concluding that a relationship does not exist in the population when, in

fact, it does) increases.

Unfortunately, it is not easy to check the linearity assumption in logistic regres-

sion. Many procedures have been proposed, but none is easily accomplished. If you

suspect nonlinearity, the simplest approach is to divide a continuous predictor into cat-

egories. For example, in our tubal ligation example, number of births could be divided

into two groups based on a median split: 1 to 3 births versus 4 or more births.

Converting a continuous variable to a categorical one throws away potentially

useful information, however, and one seldom knows in advance that the linearity as-

sumption has been violated. A strategy for testing the assumption (called a logit step
test) is to use the continuous independent variable to create a new categorical vari-

able with equal intervals, and then use the new variable in the logistic regression. For

example, the variable age in our tubal ligation example could be used to create an

age-category variable with 5-year intervals, which would result in six age categories.

When the new variable is used in the analysis, the b coefficients for the six categories

should increase in roughly equal linear steps if there is linearity between age and the

logit for having a tubal ligation.

Problems Relating to Logistic Regression

Many of the problems discussed in the chapter on least-squares regression also apply

in logistic regression. First, as in multiple regression, logistic regression performs

best when measurement error is low. Predictors that are scores on a composite scale

should ideally have internal consistency reliabilities of at least .80.

Multicollinearity should be avoided. As the magnitude of correlations among

predictors increases, the standard errors of the logistic coefficients become inflated.

Unfortunately, the SPSS logistic regression program does not produce tolerance in-

formation such as that produced in its multiple regression program. You should be

on the lookout for suspiciously large standard errors for the b coefficients as a signal

of multicollinearity. The easiest way to address multicollinearity is to eliminate a

predictor that is strongly correlated with another predictor in the model.

Outliers should also be avoided in logistic regression. Outliers can be detected

by examining standardized residuals for each case. In logistic regression, the

residual is the difference between the observed probability of the dependent variable
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event and the predicted probability based on the model. The standardized residual is

the residual divided by an estimate of its standard deviation. Some recommend that

any standardized residual whose absolute value is greater than 2.58 be removed from

the analysis or trimmed, but others use a value of 3.0 as the cutoff. In SPSS, stan-

dardized residuals (Zresid) can be requested as an option in the “Save” dialog box, or

you can select the option for displaying residuals that lie outside a specified value,

such as two SDs from the mean, which is the default.

RESEARCH APPLICATIONS OF LOGISTIC REGRESSION

Logistic regression is extremely popular among healthcare researchers for predicting

clinically important outcomes. This section describes major applications of logistic

regression and discusses methods of effectively displaying the logistic regression results.

The Uses of Logistic Regression

Logistic regression can be used for several purposes by nurse researchers, as

described in the following section.

1. Answering research questions The primary use of logistic regression is to

answer questions about the relationships among research variables when the

dependent variable is categorical. Logistic regression is especially useful when

researchers want to estimate the probability of an event occurring, and the rel-

ative risk associated with one status on a predictor variable as opposed to an-

other.

2. Prediction and classification Logistic regression offers an excellent vehicle for

making predictions about a person’s classification when there is information on a

set of predictor variables. Classification predictions can be important for decision

making and resource management—for example, predicting which discharged

patients are most in need of follow-up or projecting which patients would most

benefit from a costly intervention. As an actual example, Metheny and her col-

leagues (2005) used logistic regression to facilitate nurses’ decision making about

feeding tube position. They found that several clinical variables (e.g., volume of

aspirate from the feeding tube, pH of the aspirate) were accurate 81% of the time

in classifying tube site (gastric versus small bowel).

3. Validity assessments Instruments are sometimes developed with the specific

aim of classifying people—for example, there are psychological tests that are

used in the diagnosis of different types of mental illness. Logistic regression

can be used as one tool for evaluating the validity of such instruments—i.e., for

assessing the extent to which the instrument makes accurate classifications.

4. Assessing bias t tests and ANOVA could be used to evaluate various types of

bias, such as selection bias, nonresponse bias, or attrition bias. These assess-

ments involve comparing groups (e.g., those who continue in a longitudinal

study versus those who drop out) in terms of various background characteristics

one variable at a time. Logistic regression can be used to assess whether the

groups can be reliably differentiated on the basis of a set of characteristics taken

as a whole. In effect, this involves an effort to model the bias—for example, to

model the attrition process or the selection process. When multivariate tech-

niques such as logistic regression are used and no biases are detected, the

conclusion that results are unbiased is more compelling than when a series of

univariate tests is used.

345



Logistic Regression

The Presentation of Logistic Regression 
in Research Reports

Like all other multivariate statistics, results from logistic regression almost always

require the use of tables because of the complexity of the analyses and the wealth of

information they yield. Often, two or more tables are needed—for example, when

classification is an important research objective and it is deemed important to present

the classification table.

A summary table for a simultaneous logistic regression analysis normally

includes the following information in the main body: names of the predictors, lo-

gistic regression coefficients (and perhaps their standard errors), and the odds

ratio for each predictor. Additional information might include the Wald statistic

and its significance for each predictor, and confidence intervals around each odds

ratio. The title of the table usually indicates the name of the outcome whose prob-

ability is being predicted. Sample size should be specified, either in a footnote or

in the title. Finally, the value, significance level, and name of the overall model

test (e.g., either the likelihood ratio test or the Hosmer-Lemeshow test) should be

indicated.

An example of a logistic regression table is presented in Table 3, which

summarizes the results from the tubal ligation example. This table lists the four

predictors, followed by their associated b-weights and standard errors. The table

also displays the Wald statistic associated with each predictor, the odds ratios,

and the 95% CIs around the odds ratios. At the bottom of the table, information is

provided about the omnibus model chi-square statistic (the likelihood ratio test),

Nagelkerke R2, and the percent correctly classified with the model. A footnote

provides information about the reference category for the educational attainment

variable. Finally, the table title specifies the dependent variable, and provides

sample size information.

TABLE 3 Example of a Summary Table with Logistic Regression Results

Predictor b (SE) Wald Odds Ratio

95% CI, Odds Ratio

Lower Upper

Age .07 (.01) 180.24*** 1.08 1.07 1.09
Number of births .28 (.03) 118.52*** 1.32 1.26 1.39

Educational attainmenta 2.88
No high school diploma .13 (.10) 1.63 1.14 .93 1.40
Diploma or GED .18 (.11) 2.87 1.20 .97 1.47

Has a child with a disability .34 (.09) 14.57*** 1.41 1.18 1.67
Constant �4.09 (.21) 370.17***

Model (likelihood ratio) chi-square � 450.57, df � 5, p � .001

Nagelkerke R2 � .15

Percent correctly classified � 65.1%

aReference category � A.A. or B.A. degree
***� p � .001

Logistic Regression Results Predicting the Probability of a Tubal Ligation (N � 3,764)
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The following paragraph is an example of how these results could be described

in the text:

Logistic regression was used to estimate the probability of having had a tubal liga-

tion in this sample of low-income mothers. Four predictor variables—the woman’s

age, number of births, educational attainment, and whether she had a child with any

type of disability—were used in the analysis, with simultaneous entry of predictors.

As shown in Table 3, the overall predictive model was statistically significant (like-

lihood ratio chi-square � 450.57 [5] p � .001). With the exception of educational

attainment, the independent variables were all significant in predicting the likeli-

hood of a tubal ligation. Older women and those with more births were significant-

ly more likely than younger women and those with fewer births to have had a tubal

ligation. The odds of having a tubal ligation was 41% higher among women who

had a child with a disability (OR � 1.41) than among women without a disabled

child. Although the overall model and three predictors were statistically significant,

the classification results indicated modest success, with an overall rate of correct

classification of 65.1%. The overall effect size was also modest, with Nagelkerke R2

equal to .15.

Research Example

This section describes an interesting nursing study that

used logistic regression analysis. The researchers’ sum-

mary table provides a good example of how multiple

outcomes can be presented in a single table.

Study: “The effects of hospitalization on multiple units”

(Kanak et al., 2008)

Study Purpose: The purpose of this study was to exam-

ine the effects of hospital patients’ relocations to multi-

ple care units during a hospital stay on a broad range of

healthcare outcomes. The researchers noted that trans-

fers to different hospital units are usually done to

provide patients with the appropriate type and level of

care, but that multiple transfers could adversely affect

the quality of health care.

Methods: The data for this study were extracted from a

large database created in a study of nursing outcomes

effectiveness. The dataset was constructed with clinical

and administrative records data from inpatient units in a

large academic medical center. The sample for the study

consisted of 7,851 hospitalized patients aged 60 years or

older. The independent variable was the number of hos-

pital units on which a patient resided during an acute

hospitalization. A variety of clinically important out-

comes were the dependent variables in the study. The

dichotomous outcomes included whether or not the

patient: (a) had a nosocomial infection acquired after

hospital admission; (b) had a fall; (c) died during hospi-

talization; (d) was discharged to any location other than

home; (e) had a medication error; and (f) had any

adverse occurrence during hospitalization.

Analysis: Logistic regression analysis was used to assess

the effect of multiunit residence during hospitalization on

the dichotomous clinical outcomes. For the purposes of

these analyses, number of units of hospitalization was

defined as a categorical variable with four levels: 1 unit,

2 units, 3 or 4 units, or 5 or more units. To more clearly ex-

amine the relationship between number of units and the

outcomes, several variables relating to patient acuity were

statistically controlled: principal medical diagnosis, coded

as 1 of 16 diagnostic categories; presence or absence of

30 comorbid medical conditions; and a measure of illness

severity, with ratings from 1 (mild) to 4 (severe/extreme).

Results: All dichotomous outcomes, except patient mor-

tality, were significantly associated with number of

hospital units. Table 4 summarizes logistic regression re-

sults for three of the dichotomous outcomes. (The full

model with control variables is not shown in this table;

only parameter estimates for the primary independent

variable are presented.) Being hospitalized on multiple

units was associated with higher risk of negative out-

comes, and risk increased with the number of units. For

example, even after controlling for diagnosis and severity

of illness, the odds of acquiring a nosocomial infection

in the hospital were more than five times greater among

those who had resided on 5 or more units than among

those on a single unit (OR � 5.56). The risk was lower as
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TABLE 4 The Effect of Number of Hospitalization Units 
During a Hospital Stay on Selected Clinical Outcomes (N � 7,851)a

Number of Hospital Unitsb b SE Wald x2 p OR

Outcome 1: Nosocomial Infectionc

� 5 units (n � 1,058) 1.72 .21 66.2 �.001 5.56
3–4 units (n � 1,629) 1.05 .22 23.9 �.001 2.87
2 units (n � 2,726) .46 .23 4.0 .046 1.59

Outcome 2: Medication Errorc

� 5 units (n � 1,058) 1.35 .15 86.4 �.001 3.87
3–4 units (n � 1,629) .69 .15 22.6 �.001 1.99
2 units (n � 2,726) .24 .15 2.6 .105 1.27

Outcome 3: Experienced a Fallc

� 5 units (n � 1,058) .89 .18 24.5 �.001 2.43
3–4 units (n � 1,629) .58 .17 11.9 �.001 1.99
2 units (n � 2,726) �.28 .17 2.6 .106 .76

aIn the overall logistic model, the following variables were statistically controlled: medical diagnosis,

comorbid medical conditions, and severity of illness.
bThe category for 1 hospital unit (n � 2,438) was used as the reference category in these analyses.
cThe Wald chi-square statistic for the overall “number of units” variable was statistically significant

at p � .001(df � 3) for all outcomes.

Abridged and adapted from Kanak et al. (2008), Table 4.

Summary Points

• Logistic regression is a multivariate technique for

predicting a categorical dependent variable;

binary logistic regression is used when the

outcome is dichotomous and when the goal is to

predict the probability of one outcome or event

occurring versus another.

• Logistic regression uses maximum likelihood
estimation (MLE) rather than least-squares esti-

mation and has less stringent assumptions than

analyses using the general linear model (GLM),

such as discriminant analysis. MLE estimates the

parameters that are most likely to have generated

the observed data.

• Logistic regression develops a model for estimating

the odds that an event will occur—the ratio of the

probability that it will occur to the probability that it

will not. The dependent variable is transformed to

be the natural log of the odds, which is called a

logit. The logit is predicted from a combination of

predictors, weighted by logistic coefficients, plus a

constant.

• For each predictor, the logistic regression analysis

yields an odds ratio (OR), which is the factor by

which the odds change for a unit change in the pre-

dictor. The odds ratio is a measure of comparative

risk—the odds of an event given one condition,

versus the odds of the event given an alternative

condition.

• Predicted probabilities based on the logistic

regression equation can be used to classify

cases—that is, to predict whether an event or out-

come will or will not occur.

• Dependent variables in binary logistic regression

are typically dummy-coded variables with the

code 1 assigned to the event or outcome of inter-

est, and 0 to others.

• Predictor variables can be continuous, dichoto-

mous, or categorical. Categorical variables can be

the number of units declined, but was still 59% more

likely for those who were on two units.

Conclusions: The authors noted the importance of nurses

in coordinating the care that patients receive across

inpatient units, and the need to develop and implement

strategies to mediate the negative consequences associ-

ated with movement to different units.
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specified such that different types of contrasts are

possible (e.g., by means of indicator coding or

deviation coding). Interaction terms can also be

used as predictors.

• Predictors can be entered into the regression equa-

tion simultaneously, hierarchically, or in a stepwise

fashion. Stepwise entry can involve either forward

selection or backward elimination of predictors.

• Tests of statistical significance are available for

testing the overall regression model and individual

predictors. There are several alternatives for both

types of test.

• The most often-reported statistic for testing the over-

all model is a chi-square statistic from a likelihood
ratio test (sometimes called a goodness-of-fit test).
The test involves the likelihood index, which repre-

sents the probability of the observed results; it is

usually reported as �2 times the log of the likeli-

hood (�2LL). The omnibus test of the model is the

difference between �2LL for the model being tested

and �2LL for the null model, that is, the logistic

model without any predictors and only a constant

term.

• An alternative method of testing the goodness of

fit of the model is to compare the model with a

hypothetically perfect model, using the Hosmer-
Lemeshow test. With this test, nonsignificance is

desired because it indicates that the model being

tested is not significantly different from a hypo-

thetically perfect one.

• The Wald statistic is often used to assess the sig-

nificance of individual predictors in the logistic

model, although the likelihood ratio test, which

can be used to test model improvement when pre-

dictors are added to the model in blocks, is often

preferable.

• There is no equivalent to multiple regression’s R2

statistic, but statisticians have devised several

pseudo R2 indexes to summarize overall effect size

for logistic regression. The most widely reported is

the Nagelkerke R2 which approximates the tradi-

tional R2 statistic but which does not, strictly

speaking, indicate the proportion of variance that

predictors explain in the outcome variable.

• Although logistic regression does not have the

restrictive assumptions of GLM procedures, it is

assumed that continuous predictor variables have a

linear relationship to the log odds of the dependent

variable. It is a difficult assumption to test, but one

option is to use the logit step test, which involves

converting continuous variables to equal-interval

categorical ones and then seeing whether the pro-

gression of b coefficients is linear.

Logistic Regression

Exercises

The following exercises cover concepts presented in this chap-

ter. Exercises in Part A are indicated with a dagger (†).

Exercises in Part B involve computer analyses using the

datasets for this text, and answers and comments are offered on

the Web site.

PART A EXERCISES

A1. In Table 2, students were classified as completing versus

not completing a graduate program based on a cutpoint of

.50 in the estimated probabilities. What percentage of

cases would be correctly classified if the cutpoint were

.40? What types of misclassifications would this cutpoint

produce?

A2. What is the logistic regression equation for predicting the

probability of having a tubal ligation, based on informa-

tion shown in Figure 6?

A3. Based on either your clinical knowledge or on a brief liter-

ature search, what variable would you recommend adding

to improve the prediction of a woman’s decision to have a

tubal ligation? How would you measure or construct that

variable?

A4. In the example at the end of the chapter (the study by

Kanak et al.), could the researchers have used a continuous

variable for number of units? Why do you think they used

a four-category variable to represent this independent

variable? Is there evidence in Table 4 that the linearity as-

sumption would have been violated if a continuous

variable had been used?

PART B EXERCISES

B1. For these exercises, you will be using the SPSS dataset

Polit2SetB. The analyses will focus on predicting the

probability that a woman is in good-to-excellent health

versus fair-to-poor health, which is coded 1 versus 0, re-

spectively, on the variable health. Begin by looking at

results for the odds ratio when there is only one predictor

of good health—whether or not the woman currently

smokes cigarettes (smoker). First, run the SPSS crosstabs-

based risk analysis. In the Analyze ➜ Descriptives ➜
Crosstabs dialog box, use smoker as the Row variable and

health as the Column variable. In the Cells dialog box,

†

†

†

†
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select Observed frequencies and Row and Column per-

centages. In the Statistics dialog box, select Chi-square

and Risk. Then click Continue and OK to run the analysis,

and answer these questions: (a) What percent of women in

this sample smoked? What percent of women said they

were in fair or poor health? (b) What percent of smokers

versus nonsmokers described themselves as being in good

to excellent health? (c) Is the bivariate relationship be-

tween smoking status and health statistically significant?

(d) What is the odds ratio in this analysis? What is the 95%

CI around the OR? (e) What does the odds ratio mean?

B2. In this exercise, use the Logistic regression program in

SPSS rather than Crosstabs to look at the bivariate rela-

tionship between health and smoker. In the Analyze ➜
Regression ➜ Binary Logistic dialog box, move health
into the Dependent slot and move smoker into the Covariate

slot. Click the Options pushbutton and in the next dialog

box select CI for exp(B), 95%. Then run the analysis and

answer the following questions, focusing on the Block 1

panels labeled Omnibus Test of Model Coefficients and

Variables in the Equation: (a) For the overall model in

which the probability of being in good health was predicted

based on women’s smoking status, was the model statistically

significant? What was the value of the model chi-square

statistic? (b) What is the value of the odds ratio obtained

through logistic regression (this appears in a column labeled

Exp(B))? (c) What is the 95% CI around the odds ratio?

(d) How do these results compare to those obtained in the

Crosstabs analysis (i.e., for chi-square, the odds ratio, and

the 95% CI)?
B3. In this next exercise, we will use five predictors to predict

the probability of good health (health) in a standard logistic

regression: The predictors include smoking status (smoker)

and four additional predictors, which include the woman’s

age (age), whether or not she is currently employed

(worknow), her body mass index (bmi), and how much

stress she has been experiencing (stressed). In the opening

logistic regression dialog box (Analyze ➜ Regression ➜
Binary Logistic), move health into the Dependent slot, and

move the five predictors into the slot for Covariates. Click

the Options pushbutton and in the next dialog box select

Hosmer-Lemeshow goodness of fit, Casewise listing of

residuals, and CI for Exp(B), 95%. Then click Continue

and OK to run the analysis and answer the following ques-

tions: (a) In the null model, what percent of the cases were

correctly classified? Comment on the nature of the misclas-

sifications. (b) In the null model, what was the odds ratio

for being in good-to-excellent health? (c) What is the value

of the likelihood ratio chi-square statistic for the omnibus

test of the model? Was this statistically significant? (d)

What was the value of �2LL for the full model? Using this

information and the value of the model chi-square statistic,

compute the value of �2LL for the null model. (e) What

were the values of the pseudo R2 statistics? (f) What was

the value of the Hosmer-Lemeshow chi-square test? Was

this value statistically significant? What does this suggest?

Logistic Regression

(g) What percentage of cases was correctly classified with

the full model? Comment on the degree of improvement

over the null model. (h) Based on the Wald statistics, which

independent variables were significantly predictive of the

women’s health status? (i) Interpret the meaning of the OR

for age in this analysis. (j) Interpret the meaning of the

OR for worknow. (k) According to the Casewise listing

panel, how many cases were outliers that exceeded the cri-

terion of 2.58 (absolute value)? Were these cases correctly

classified?

B4. In this next exercise, we will again use five independent

variables to predict the probability of good health (health),

but instead of using bmi as a continuous variable, we will

use the variable bmicat, which classifies the women based

on BMI values as normal weight, overweight, obese, or

morbidly obese. In the opening logistic regression dialog

box, put health into the Dependent slot, and move smoker,
bmicat, stressed, worknow, and age into the slot for

Covariates. Click the Categorical pushbutton and move

bmicat into the slot for Categorical Covariates, leaving the

default options of indicator coding using the last category

(morbidly obese) as the reference group. Click the Options

pushbutton and select Hosmer-Lemeshow goodness of fit

and CI for Exp(B), 95%. Then click Continue and OK to

run the analysis and answer the following questions:

(a) How many new variables were created to be predictors

for the bmicat variable? How were morbidly obese women

coded on these new variables? How many cases were clas-

sified as morbidly obese? (b) What do the results suggest

about the goodness of fit of the overall model, using both

the likelihood ratio and the Hosmer-Lemeshow tests?

(c) What was the value of the Nagelkerke R2 in this analy-

sis? How does this compare to the value obtained in

Exercise B3 when the continuous bmi was used as a pre-

dictor? (d) What percentage of cases was correctly classi-

fied in this analysis? Compare the classification success

obtained here with that obtained using the continuous BMI

variable (Exercise B3). (e) Which independent variables

were significant predictors of good health? (f) Comment

on the pattern of odds ratios for the bmicat variables. What

does the pattern suggest about the assumption of linearity

between the original BMI values and the logit for being in

good-to-excellent health?

B5. Select another variable in the Polit2SetB dataset that you

might hypothesize as a predictor of good health in this pop-

ulation of women. Run another logistic regression, entering

the new predictor in a second block (use the Next button on

the opening dialog box to get a new screen for a second

block of variables). Examine the Block 2 information to see

if the new variable significantly improved the model. Also

examine whether adding your new predictor resulted in

nonsignificance for any predictor in the Block 1 model.

B6. Using output from one of the previous three exercises

(B3 through B5), create a table to summarize key results of

the analyses. Then write a paragraph summarizing the

findings.

†

†

†
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Answers to Exercises

A1. If the cut point were .40, 85% (rather than 80%) of the cases would be correctly classified: only one completer and two non-

completers would still be wrongly classified. Student 12, originally classified as a noncompleter when the cut point was .50, had a

predicted probability of .45 and would thus now be properly classified as a completer.

A2. The equation for the logit is: [ProbTubalLigation � ProbNoTubalLigation]) � �4.087 � .277XBirths � .074XAge � .133XEdstat1 �
.179XEdstat2 � .341XChdisabl.

A4. Kanak and colleagues could have used the continuous variable for number of units during a hospitalization. The relationship

between the logit and the predictor does appear to be fairly linear, with b coefficients declining incrementally as number of units

declined—although we cannot tell if perhaps linearity ceased after five units. Their decision to use a four-category variable makes

it easier to interpret the odds ratios for the effect of number of units at a glance and seems like a sensible strategy.
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GLOSSARY
Hosmer-Lemeshow test A test used in logistic regression to evaluate how well observed frequencies of predicted probabilities

corresponding to expected frequencies in an ideal model over the range of probability values, as arranged in deciles; a good fit be-

tween the observed and the hypothetically perfect model is indicated by lack of statistical significance.

Likelihood index An index used in logistic regression, indicating the probability of the observed results given the parameters es-

timated from the analysis; typically shown as 2 times the log of the likelihood ( 2LL).

Likelihood ratio test A test that can be used to evaluate the overall model in logistic regression, or to test improvement between

models when predictors are added; computed by subtracting 2LL for the larger model from 2LL for the reduced model, result-

ing in a statistic distributed as a chi-square; also called a goodness-of-fit test.

Logistic regression A regression procedure that uses maximum likelihood estimation for analyzing relationships between inde-

pendent variables and categorical (often dichotomous) dependent variables; also called logit analysis.

Logit The natural log of the odds, used as the dependent variable in logistic regression; short for logistic probability unit.

Multinomial logistic regression A regression procedure that uses maximum likelihood estimation to analyze relationships be-

tween independent variables and categorical dependent variables with multiple categories.

Wald statistic A statistic, distributed as a chi-square, used to evaluate the significance of individual predictors in a logistic regres-

sion equation.

Binary logistic regression A regression procedure that uses maximum likelihood estimation to estimate the odds of an event oc-

curring; the analysis examines relationships between independent variables and a binary (dichotomous) outcome variable.

Cox and Snell R2 One of several pseudo R2 statistics used as an overall effect size index in logistic regression, analogous to R2 in

least-squares multiple regression, but lacking the ability to truly capture the proportion of variance explained in the outcome vari-

able.

Indicator variable A variable created by coding categorical variables into dichotomous variables, using codes of 0 and 1 to rep-

resent the presence or absence of an attribute (e.g., married = 1, not married = 0); also called a dummy variable.

Maximum likelihood estimation An estimation approach in which the estimators are ones that estimate the parameters most like-

ly to have generated the observed measurements.

Maximum likelihood factoring method A method of factor analysis that uses maximum likelihood criteria in estimating param-

eters.
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��
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Nagelkerke R2 One of several pseudo R2 statistics used as an overall effect size index in logistic regression, analogous to R2 in

least-squares multiple regression, but lacking the ability to truly capture the proportion of variance explained in the outcome vari-

able.

Pseudo R2 A type of statistic used to estimate the overall effect size in logistic regression, analogous to R2 in least-squares multi-

ple regression; the statistic should not be considered to indicate the proportion of variance explained in the outcome variable.
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Similar to many multivariate procedures described thus far, factor analysis involves the formation of linear

combinations of variables. It is different from most other multivariate procedures, however, because factor

analysis is used primarily to evaluate the structure of a set of variables, particularly in the development and test-

ing of new scales. This chapter deals exclusively with a type of factor analysis that has come to be known as

exploratory factor analysis (EFA). Another type—confirmatory factor analysis (CFA)—uses more complex

modeling and estimation procedures.

Factor analysis is exceedingly complex mathematically, and so we present only an overview. For more

detailed information, a particularly good resource for healthcare researchers is the book by Pett, Lackey, and

Sullivan (2003), as well as that by Tabachnick and Fidell (2007).
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Factor Analysis and Internal Consistency Reliability Analysis

BASIC CONCEPTS FOR FACTOR ANALYSIS

Factor analysis is used to illuminate the underlying dimensionality of a set of

measures—that is, to shed light on how variables cluster together as unidimensional

constructs that are of theoretical interest. For example, if we administered 50 questions

relating to people’s methods of coping with stress, we might determine through fac-

tor analysis that there are four distinct coping styles. Factor analysis would provide

information on which of the 50 questions “belong together” on the four dimensions

of coping. Researchers often have a priori ideas about which items go together to cap-

ture a unidimensional concept, but their hunches are not always consistent with partic-

ipants’ responses to the items. Factor analysis provides an empirical way to identify the

underlying dimensionality of a set of measures.

Factor analysis reveals the structure of a set of variables by analyzing intercor-

relations among them. The underlying dimensions identified in a factor analysis are

called factors. A factor is a hypothetical entity—a latent variable—that is assumed

to underlie the concrete measures administered to study participants.

Mathematically, a factor is a linear combination of variables in a data matrix.

A raw data matrix consists of scores on k variables for N subjects. A factor could be

defined by the following equation:

F1 � b1X1 � b2X2 � . . . bkXk

where F1 � a factor score for Factor 1

k � number of original variables

b1 to bk � weights for each k variable

X1 to Xk � values on the k variables

Factor analysis solves for the b weights (called factor loadings) to yield factor
scores for major dimensions underlying the original measures.

Most researchers perform factor analysis when they are developing a scale for

use in subsequent research. In our example of 50 items tapping coping styles, the ul-

timate goal might be to understand the clinical or demographic characteristics of

people with different coping styles. In this situation, the factor scores would be the

dependent variables, and individual characteristics would be the independent vari-

ables. As another example, we might want to determine if a certain coping style was

better than others in alleviating presurgical stress; here, coping style would be the in-

dependent variable and stress would be the dependent variable. Factor analysis thus

can be viewed as a data reduction technique. Rather than having 50 variables to use

as independent or dependent variables (i.e., the original items), factor analysis re-

duces the set to four new variables. Thus, factor analysis is important as a data man-

agement strategy that can contribute to analytic and conceptual parsimony.

Factor Matrices

Matrices play an important role in factor analysis and, indeed, matrix algebra is re-

quired in the factor analytic solution. The process begins with the original data matrix

(subjects � variables). Many of the operations performed in factor analysis involve

manipulations of the correlation matrix (variables � variables, across subjects).

One of the products of a factor analysis is a factor matrix, which arrays the orig-

inal variables along one dimension and factors along the other. There are several impor-

tant types of factor matrix, as we discuss later in this chapter. For now it is important to

know that the entries in a factor matrix are factor loadings that convey information about

the relationship between the original variables and the underlying factors.
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TABLE 1 Hypothetical Factor Matrix for Six Aptitude Tests

Tests

Factor
Communality 

(h2)I II

A .84 .21 .75

B .90 .24 .87

C .74 .13 .56

D .17 .73 .56

E .22 .80 .69

F .27 .91 .83

Eigenvalue 2.21 2.12 4.33

Explained Variance 36.8% 35.3% 72.1%

Table 1 shows a hypothetical example of a factor matrix. Let us suppose that

the variables listed in the left-hand column represent six different aptitude tests (A

through F) that were administered to a sample of students. Factors I and II are empir-

ically derived factors that might represent, for example, verbal aptitude (Factor I)

and quantitative aptitude (Factor II).

Factors loadings can (except in certain cases we discuss later) be interpreted in

much the same fashion as correlation coefficients. They can range in value from �1.00

through zero for no correlation to �1.00. The first entry in the matrix in Table 1 in-

dicates a strong positive correlation between Test A and Factor I (.84). Tests A, B,

and C have high loadings on Factor I, while the loadings for Tests C, D, and E on the

first factor are more modest—they are all less than .30. Conversely, the first three tests

have modest loadings on Factor II, while the last three tests have loadings of .73 or

greater on this factor. We would interpret the factors by trying to conceptualize what

it is that Tests A, B, and C have in common that they do not have in common with

Tests D, E, and F. In our example, the Tests A, B, and C might be vocabulary, reading

comprehension, and sentence completion tests, respectively, all of which have a

strong verbal component. The three other tests might be geometry, math computation,

and problem solving tests—all of which have a quantitative component.

Table 1 has two other types of useful information. The communality is a

measure of a variable’s shared variance, sometimes referred to as common factor
variance. Communality is sometimes labeled h2, as it is in Table 1. The communal-

ities of the original variables in the analysis are equal to the sums of squares of the

factor loadings for those variables. Thus, for Test A, the communality is (.84)2 �
(.21)2 � .75.

Common factor variance of a particular variable indicates the variance that it

shares in common with other variables. The variability of each of the six tests in

Table 1 can be expressed as follows:

VTotal � VCommonFactor � VSpecific � VError

where VTotal � total variance

VCommonFactor � common factor variance (h2)

VSpecific � variance specific to the variable

VError � error variance
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Using Test A as the example, all of the variance in students’ scores on Test A

consists of variance that Test A has in common with the other five tests, plus vari-

ance that is specific to Test A, plus error variance (e.g., the unreliability of the test).

Across the two factors, then, 75% of the variance in Test A is common factor vari-

ance, while the remaining 25% is unique variance, which is partly specific variance

and partly error variance. Table 1 indicates that Test F has the highest proportion of

common factor variance (.83), while Tests C and D have the lowest (.56). The main

problem of factor analysis is the allocation of the total common factor variance of a

variable (h2) to the different factors.

Below the listing of the six tests in Table 1 is a row labeled eigenvalue. An

eigenvalue is the sum of the squared loadings for a specific factor. For Factor I, the

eigenvalue is (.84)2 � (.90)2 � (.74)2 � (.17)2 � (.22)2 � (.27)2 � 2.21. An eigen-

value is an index of how much variance in the factor solution is explained by a given

factor. In this example, the eigenvalues for both factors are about the same (2.21 and

2.12), indicating that both verbal and quantitative aptitude account for a comparable

percentage of variance in the six test scores. The exact amount of variance is shown

in the bottom row, 36.8% for Factor I and 35.3% for Factor II. Together the two fac-

tors account for 72.1% of the total variance in the six tests.

Requirements and Assumptions for Factor Analysis

Factor analysis uses a correlation matrix as its starting point, and thus the assump-

tions underlying the use of correlations should be kept in mind. Each pair of vari-

ables in a factor analysis should be linearly correlated; curvilinear relationships

degrade the analysis. The factor analytic solution is enhanced when the variables are

normally distributed, but the solution may be interesting and worthwhile even when

normality is not attained for all variables. Influences on the value of correlation co-

efficients should be kept in mind because things that affect correlations also affect

factor analytic solutions.

The variables in a factor analysis are generally measured on a scale that is

interval or ratio, or on an ordinal scale that approximates interval properties (such as

individual Likert-type items). The variables can be entire scales or tests (as in our ex-

ample of factor analyzing scores on six aptitude tests) or, more typically, individual

items (as in the example of analyzing 50 items that measured methods of coping

with stress).

Phases in Factor Analysis

Factor analysis is often described as a two-step process (factor extraction and factor

rotation, which we describe subsequently), but factor analysis typically involves

many phases with several iterations and feedback loops. The complexity arises from

the fact that factor analysis involves a number of semisubjective decisions, which are

usually evaluated by testing alternatives.

The first step in the factor analysis involves transforming the raw data matrix

into a correlation matrix and undertaking some preliminary actions to assess

whether, in fact, factor analysis makes sense. If intercorrelations are too low, for

example, it may not be sensible to proceed. Thus, researchers should take steps to

ensure that the correlation matrix is factorable, to determine if there are missing data

problems that need to be resolved, and to ascertain that the sample size is adequate.

The next phase, factor extraction, focuses on determining the number of fac-

tors that are needed to adequately capture the variance in the set of variables. There
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are many different approaches to factor extraction, and there are a number of differ-

ent criteria that can be used to determine the appropriate number of factors. The

product from this phase of analysis is an unrotated factor matrix.
Factor extraction seeks to maximize variance, but does not result in readily un-

derstandable results. Thus, the next phase of factor analysis involves transforming

the original factors so that the results are more interpretable, through a process called

factor rotation. As with factor extraction, there are alternative methods of factor ro-

tation. The result of this phase of the analysis is a rotated factor matrix. The factor

matrix in Table 1 was a rotated one.

The next phase typically involves interpreting, evaluating, and refining the fac-

tors. Researchers decide how many factors to extract and rotate, and select methods

to extract and rotate them. Typically, these decisions must be evaluated to see if alter-

natives result in a better and more interpretable solution. Interpretation is a key activ-

ity in a factor analysis.

Once the extraction and rotation have been finalized and interpretation has

been achieved, factor scores for use in subsequent analyses can be computed for

each case. As with the other phases, the researcher has some options with regard to

the computation of factor scores. Thus, although factor analysis is widely used and

respected, its myriad options for key decisions, the lack of clearcut criteria for deci-

sion making, and the importance of interpretation make it different from other statis-

tical procedures.

EVALUATION OF FACTORABILITY

Before undertaking a factor analysis, researchers should do a preliminary evaluation

to establish that a factor analysis makes sense. This involves looking at descriptive

information for the variables in questions—both univariate description (e.g., are the

variables severely skewed?) and bivariate description (are correlations between

variables linear?). This section covers several relevant issues for a preliminary as-

sessment.

Sample Size

To avoid capitalizing on small random differences in the magnitude of the correla-

tion coefficients, the sample size for a factor analysis should be large. Sample sizes

of at least 300 are usually advisable. Moreover, there should be at least 10 cases per

variable, and an even greater case-to-variable ratio is desirable. Thus, if there are

50 items being factor analyzed, the sample should ideally be at least 500, if not larger.

TIP: Factor analytic solutions almost always require replication. If it is
possible to replicate within a single study, this opportunity should be
pursued. Thus, with 20 variables and a sample of 500 cases, one alternative
is to randomly divide the sample in half, perform a factor analysis with the
first subsample, and then cross-validate the results through a factor
analysis of the second. If the two analyses reveal similar factor structures,
the results will be compelling. Confirmatory factor analysis, which uses
maximum likelihood estimation, is often used to test hypotheses about the
comparability of factor structure in different samples.

Having a large overall sample does not necessarily provide a sufficient basis

for factor analysis if there are large amounts of missing data. The correlation matrix
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for factor analysis should be based on a rectangular matrix of data values—that is,

there should be a valid value on every variable for every person in the analysis. A

correlation matrix based on pairwise deletion of missing values, with coefficients

based on a varying number of cases, should not be used in factor analysis. If there are

missing values for some people, either the missing values should be estimated or the

cases should be deleted (listwise deletion).

If there are, say, 25 variables in the analysis, there is a strong likelihood that

some people will have missing data on at least one of them. The removal of all cases

with a missing value may result in a sample that is too small for a factor analysis.

Thus, an early first step in factor analysis is to evaluate the extent of missing data.

With a large sample and small number of missing values, the factor analysis can pro-

ceed using listwise deletion. If missing values are sporadic and sample size is mar-

ginal, a missing values replacement strategy can be pursued. If missing values are

extensive, however, factor analysis may not be appropriate.

TIP: SPSS has an option for replacing missing values in its factor analysis
program, but it is not always desirable to select this option.

Assessment of Correlations and Sampling Adequacy

A basic requirement for a factor analysis is that there should be a number of sizeable

correlations between variables in the matrix. If correlations among the variables are

low, it does not make sense to search for an underlying construct that captures what

the variables have in common—the analysis may well indicate that there as many

different factors as there are original variables.

Inspection of the magnitude of coefficients in the correlation matrix provides

preliminary clues about factorability. If the correlation matrix consists mainly of cor-

relation coefficients that are nonsignificant or with an absolute value less than .30,

there is probably nothing to factor analyze. If some variables have particularly low

correlations with other variables, they should probably be dropped from the analysis.

Some recommend that the average of the correlations be .30 or higher.

On the other hand, if correlations are too high, problems with multicollinearity

may occur. If there are variables with intercorrelations greater than .80, some should

be dropped. It is not just that highly correlated variables are redundant—the problem

is that very high correlations in the matrix can result in an unstable solution.

TIP: The correlation matrix should also be inspected to see if the signs on
the correlation coefficients make sense from a conceptual point of view—
that is, are there positive correlations between items that you think are
conveying similar meaning, and negative correlations between items with
opposite meanings? This is an issue we discuss in a later section.

Computer programs for factor analysis offer many diagnostic tools for evaluat-

ing factorability in terms of magnitude of intercorrelations and sampling adequacy,
which refers to the adequacy of sampling variables. One such tool is Bartlett’s test
of sphericity, which tests the null hypothesis that the correlation matrix is an identity
matrix—one in which correlations among the variables are all zero. If this null hy-

pothesis cannot be rejected, factor analysis is not appropriate. Significance on

Bartlett’s test supports further evaluation of the factorability of the data. However,
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this test is highly influenced by sample size (number of participants), and so the test

is almost always significant.

A more important tool is the Kaiser-Meyer-Olkin (KMO) test, a measure of

sampling adequacy that compares the magnitudes of correlation coefficients to the

sizes of partial correlation coefficients. In this context, the partial correlation coeffi-

cient between two variables is the correlation after controlling for the effects of all
other variables. In a factorable set of data, partial correlations should be small in

relation to observed correlation coefficients. The KMO measure of sampling ade-

quacy (which can be computed for all of the variables combined, as well as for each

variable individually) can range from 0 to 1. The closer the value is to 1, the better

the prospects for factor analysis. KMO values of .80 or higher are considered good,

and those in the .70s are fair. Anything below .50 is considered unacceptable for a

factor analysis.

For several parts of our discussion in this chapter, we will be describing a fac-

tor analysis of 11 items that were administered to a sample of over 1,800 mothers

who had a child between the ages of 2 and 6. These 11 items (listed in Figure 4)

measure aspects of the parent–child relationship. Respondents were asked to rate on

a 0-to-10 scale the degree to which each statement was not at all true (0) to

completely true (10). Figure 1 presents the SPSS printout for Bartlett’s test and the

overall KMO test for these data. This figure shows that Bartlett’s test was significant

(p � .001) and that the value of KMO (.791) is reasonably high.

KMO values for individual variables (sometimes called measures of sampling

adequacy or MSA) can be found on the diagonal of the anti-image correlation ma-
trix. The matrix for our example is too large to reproduce here, but KMO values

ranged from a low of .695 for one item to a high of .846 for another. Once again,

these values support a decision to proceed with a factor analysis.

Example of a factorability assessment:

Lerdal and colleagues (2009) factor analyzed a Norwegian translation of the 24-item

Stages of Change questionnaire. Preliminary analyses were undertaken to assess the

factorability of the scale. The KMO index of sampling adequacy was .863 and

Bartlett’s test of sphericity was statistically significant (p � .001). The researchers

concluded that their data were amenable to factor analysis.

FACTOR EXTRACTION

A fundamental assumption in factor analysis is that underlying constructs are re-

sponsible for the correlations among the variables. The goal of the analysis is to

identify these constructs. Ideally, the solution will reveal a small number of inter-

pretable and meaningful constructs (factors) that are of substantive interest.

KMO and Bartlett’s Test

Kaiser-Meyer-Olkin Measure of Sampling
Adequacy

.791

Bartlett’s Test of
Sphericity

Approx. Chi-Square
df
Sig.

3162.796
55.000

.000

FIGURE 1 SPSS printout for evaluating factorability.

361



Factor Analysis and Internal Consistency Reliability Analysis

In the first phase of actual factor analysis, factor extraction seeks clusters of in-

tercorrelated variables within the correlation matrix and extracts as much variance as

possible from the common factors. Different statistical criteria and measurement

models can be used in the factor extraction stage, and most factor analysis programs

offer several alternative extraction methods.

Principal Components Analysis

A widely used method of factor extraction is the principal components method.

Principal components analysis (PCA) differs from other factor analytic techniques

in that it factor analyzes all variance in the observed variables, not just common fac-

tor variance. Mathematically, the issue boils down to what is placed on the diagonal

of the correlation matrix prior to matrix operations, because the variance that is ana-

lyzed is the sum of the values in the positive diagonal. With PCA, all diagonal values

are 1s: There is as much variance to be analyzed as there are variables in the analy-

sis. All variance in the original variables are distributed to the factors, including

unique variance and error variance for each variable.

PCA creates successive linear combinations of the observed variables. The

first factor, or principal component, is the linear combination that accounts for the

largest amount of variance, using a least-squares criterion. The second component is

formed from residual correlations: It accounts for the second largest amount of vari-

ance that is uncorrelated with the first component. Successive components account

for smaller and smaller proportions of total variance in the data set, and all are or-

thogonal to (uncorrelated with) previously extracted components. Thus, the extracted

factors (components) represent independent sources of variation.

In PCA, there are as many factors as there are variables but, if the data are factor-

able, only the first few account for a noteworthy proportion of variance. Figure 2

Factor Analysis

Total Variance Explained

Initial Eigenvalues

Component Total % of  Variance Cumulative %

1 2.955 26.859 26.859

2 1.694 15.398 42.258

3 1.089 9.899 52.156

4 .841 7.641 59.797

5 .760 6.907 66.704

6 .712 6.474 73.178

7 .694 6.310 79.488

8 .619 5.625 85.113

9 .593 5.388 90.501

10 .530 4.820 95.322

11 .515 4.678 100.000

Extraction Method: Principal Component Analysis

FIGURE 2 SPSS printout, total variance explained in a PCA for 11 parenting items.
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presents a summary table from a PCA factor extraction of the 11 parenting items.

(The figure was produced within SPSS using Analyze ➜ Data Reduction ➜ Factor;

PCA is the default method of extraction.) In this analysis, 11 factors (components)

were extracted. The amount of total variance explained by each component is shown

in column 2 (Total), which represents initial eigenvalues for each factor. Each vari-

able in a factor analysis is standardized to have a mean of 0 and an SD (and variance)

of 1.0. All of the variance in the 11 original items is accounted for by the 11 factors

in PCA: if we summed the eigenvalues in column 2, the total would be 11.0. To com-

pute the proportion of variance explained by a factor, the eigenvalue associated with

the factor must be divided by 11.0. For the first factor in this example, 2.955 �
11.0 � .26859; that is, 26.859% of the variance in the 11 items is accounted for by

the first factor, as shown in column 3. Subsequent factors account for declining per-

centages of variance (e.g., 15.4% for factor 2). The final column indicates the cumu-

lative percentage of variance explained by the factor for that row, plus all preceding

factors. Thus, the first three factors account for just over 52% of the variance in the

11 variables. Cumulatively, the 11 factors account for 100% of the variance in the

original variables.

Example of a principal components factor extraction:

Robbins, Wu, Sikorski, and Morley (2008) used the principal components extraction

method in their factor analysis of items from two scales for middle-school youth—

the Adolescent Physical Activity Perceived Benefits scale (10 items) and the

Adolescent Physical Activity Perceived Barriers scale (9 items). For each scale, two

factors were extracted.

Factor Extraction of Common Factor Variance

Other methods of factor extraction use a different measurement model—they assume

that measurement error involves both a random component and a systematic compo-

nent that is not unique to individual items. Consequently, only common factor vari-

ance is factor analyzed in these other extraction methods; unique variance is excluded.

TIP: Some authors restrict the term factor analysis to those approaches
that factor analyze common factor variance. Controversy rages among
statistical experts about whether PCA or common factor variance models
are preferred, but they often lead to similar conclusions.

The principal factors (PF) method of extraction (sometimes called principal-
axis factoring) is similar to PCA, and is the most popular of the common factor

extraction methods. The main difference is that in the PF method, estimates of the com-

munalities, rather than 1s, are on the diagonal of the correlation matrix. The initial

communality estimates are the squared multiple correlation coefficients for the speci-

fied variable, with all other variables in the correlation matrix as the predictors. R2, as

we have seen, is an index of shared variance among variables and thus is a reasonable

proxy for common factor variance. The communalities are repeatedly re-estimated

from the factor loadings in an iterative fashion until there are only negligible changes

in the communality estimates. As with principal components, the goal of a PF extrac-

tion is to extract the largest possible amount of variance with successive factors.
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Example of a principal axis factoring:

Looman and Farrag (2009) used principal axis extraction in their factor analysis of

items in an Arabic translation of the Social Capital Scale, a measure of a person’s in-

vestment in relationships. The scale was used in a study of parental social capital as

a possible protective factor for child health. The researchers extracted four factors

that accounted for 53% of the variance.

The alpha factor method assumes that the variables in a particular factor

analysis are a sample from a hypothetical universe of potential variables. The main

concern of alpha factoring is the reliability of the common factors. Cronbach’s alpha

is the most widely used index of the internal consistency reliability of a measure—

we discuss this statistic later in this chapter. In alpha factoring, the communalities

are estimated in an iterative process that maximizes coefficient alpha for the factors.

Another option is maximum likelihood extraction, which uses the estimation

approach. This method estimates population values for the factor loadings through a

process that maximizes the likelihood of yielding a sample with the observed corre-

lation matrix from the population. Again, an iterative algorithm is used to arrive at

the factor solution.

Other lesser-used methods of factor extraction include image factoring,
unweighted least squares (Minres) factoring, and generalized least squares fac-
toring. Although there may be sound substantive or methodologic reasons for pre-

ferring one method over another, it has typically been found that when there are a

fairly large number of variables in the data set and a large sample of participants, dif-

ferences in factor extraction solutions tend to be small.

Number of Factors to Extract

In performing a factor analysis, researchers make decisions about the number of factors

to extract, rotate, and score. There are two competing goals in making the decision. The

first is to maximize explained variance. The greater the number of factors, the greater

the percentage of variance explained. We can see in Figure 2 that we can account for

100% of the variance in the 11 items by using 11 factors—but we would then have as

many factors as variables, nullifying the value of the factor analysis. The competing

goal is parsimony: The fewer the factors, the more parsimonious is the factor solution in

describing the dimensionality of the data matrix. Yet, if too few factors are extracted, the

proportion of explained variance might be inadequately low and important dimensions

within the data set might go unidentified. If we used only the first factor in Figure 2, for

example, we would account for only about 27% of the variance in the data set; more-

over, by using only one factor we would miss a sizeable percentage of the variance that

can be accounted for by the second factor (15%). The overall goal, then, is to explain as

much variance as possible using the fewest factors as is reasonable.

Researchers’ decisions about number of factors to use can be based on various

criteria. The simplest method is to examine eigenvalues from an initial run with prin-

cipal components extraction. A factor with an eigenvalue less than 1 is not valuable.

An eigenvalue in PCA represents factor variance, and so an eigenvalue lower than 1.0

is less important in accounting for variance in a factor than an original variable, all of

which have a variance of 1.0. According to this criterion—sometimes called the

Kaiser-Guttman rule—we would conclude from Figure 2 that there should be three

factors, because factors 1, 2, and 3 have eigenvalues greater than 1.0. SPSS uses this

criterion as the default.
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FIGURE 3 SPSS printout for a scree plot from a principal components analysis.

A second approach is to use a scree test, which plots successive eigenvalues for

the factors. Figure 3 shows an SPSS-generated scree plot in which the eigenvalues

from Figure 2 are graphed along the Y axis and the 11 factors are graphed along the X
axis. Scree plots show declining values for the eigenvalues, consistent with the fact

that each successive linear combination maximizes extracted variance. What we are

looking for is a sharp discontinuity in the steep slope of the plot that separates the larger,

more important factors from the smaller, less reliable factors. Expressed another way,

you need to look for the point in the plot where a line drawn through the points sharply

changes slope. In this example, an argument could be made that a break in the slope

occurs between factors 3 and 4. This suggests again that three factors should be

retained—although we can see that a two-factor solution also looks plausible.

Another criterion that is sometimes used is the proportion of variance accounted

for by a factor. It has been argued that a factor is probably not important if it accounts

for less than 5% of the total variance in a data matrix. In the output in Figure 2, nine

factors meet the criterion of accounting for at least 5% of the variance—far too many

factors to be useful in identifying underlying constructs and reducing the number of

variables for analysis.

We can also look at the success of a three-factor solution in explaining variance in

each of the original items by inspecting communalities. Figure 4 presents an SPSS

printout (which we modified to show the wording of each of the 11 items) that shows

communalities from a PCA analysis with three factors. In the column labeled Initial, the

communalities are all 1s, because in PCA there are as many factors as variables, and so

100% of the variables’ variability is accounted for initially by the 11 factors. When we

reduce the number of factors to three, the amount of variance accounted for in each

variable (its communality) is shown in the column labeled Extraction. The three factors

account for a low of 38% of the variance for Item 2 (My child seems to have been hard-

er to care for than most) to 71% of the variance for Item 9 (I am seldom annoyed or

frustrated with my child). In a successful factor analysis, the communalities are large,

and in this example they appear to be adequate with a three-factor solution.

A researcher’s decision about the number of factors to retain and interpret is

probably more critical than the decision about which factor extraction method to use.
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Communalities

Initial Extraction

1. The best part of my day is when I’m spending time with my child. 1.000 .583
2. My child seems to have been harder to care for than most. 1.000

3. There are many things my child does that really bother me a lot. 1.000 .449

4. I have given up more of my life to meet my child’s needs than I expected. 1.000 .460

5. Even when tired or upset, I show my child a lot of love. 1.000 .587

6. I feel trapped by my responsibilities as a parent. 1.000 .429

7. Sometimes I lose patience with my child’s attitude and don’t listen anymore. 1.000 .528

8. I often feel angry with my child. 1.000 .588

9. I am seldom annoyed or frustrated with my child. 1.000

10. I get a lot of joy out of being a mother. 1.000 .573

11. I’ve found that raising a child is much more work than pleasure. 1.000 .454

Extraction Method: Principal Component Analysis

.379

.707

FIGURE 4 SPSS printout for PCA, communalities for 11 parenting items with three extracted factors.

Yet, as we have seen in our example, different criteria can lead to different decisions.

If the number of meaningful factors is not clearcut, it is usually advantageous to

inspect more than one rotated factor matrix (which we discuss in the next section) to

determine which solution is most sensible. It is better to begin with too many rather

than too few factors, however, and to then “prune” if necessary.

TIP: Another method of deciding on number of factors involves an
examination of the residual correlation matrix, which shows partial
correlations between variables with the effects of the factors removed. The
residual correlation matrix would be requested after a preliminary decision
about number of factors has been made. If there are many sizeable
residuals (coefficients greater than about .10), another factor may be
desirable to account for more variance. Other decision-making strategies
for number-of-factor decisions are discussed in Tabachnick and Fidell,
2007 (pp. 644–646).

FACTOR ROTATION

Regardless of which factor extraction method is used, and regardless of how many fac-

tors are extracted, the resulting factor matrix is likely to be very difficult to interpret.

For that reason, factor analysis involves a factor rotation phase that helps researchers to

better understand the meaning of underlying factors. Factor rotation is performed for

those factors that have met an acceptable inclusion criterion, as just described.

Factor rotation is not used to improve the quality of the mathematical fit be-

tween the variables and the factors. Rotated factors are mathematically equivalent to

unrotated ones. Although factor loadings change after rotation, the communalities

and percentage of variance explained remain the same. The objective with rotation is

purely to improve the interpretive utility of the analysis.

366



Factor Analysis and Internal Consistency Reliability Analysis

X

Y

A
BC

D E
F

(A) Before Rotation (B) After Rotation

.20 .40 .60 .80 1.00

1.00

.80

.60

.40

.20

–.20

–.40

–.60

–.80

–1.00

–.20

X

Y

Y'

X'

A
BC

D E
F

.20 .40 .60 .80 1.00

1.00

.80

.60

.40

.20

–.20

–.40

–.60

–.80

–1.00

–.20

.20

.40

.60

.80

1.00
1.00

.80

.60

.40

.20

FIGURE 5 Graphic representation of factor rotation.

Principles of Factor Rotation

Factor rotation is a conceptually complex process that can most readily be explained

graphically for a situation in which there is a two-factor structure. We will use our

earlier example of the six aptitude tests that yielded two factors—which we identi-

fied as verbal aptitude and quantitative aptitude—to illustrate factor rotation.

Figure 5 (A) shows a graph whose axes are labeled Y and X. These axes represent

Factors I and II, respectively, as they are defined prior to rotation. The six dots in this

two-dimensional space represent tests A through F. The unrotated factor loadings on the

two factors can be read from the appropriate axis. Thus, for example, test A has a load-

ing of about .38 on Factor I (the Y axis) and a loading of about .79 on Factor II (the X

axis). As another example, test D has a loading of about �.50 on Factor I and .60 on

Factor II. In this unrotated factor space, all six tests have high loadings (absolute values

above .30) on both factors, making it difficult to identify their underlying dimensionality.

When the axes are rotated in such a way that the two variable clusters (A, B,

and C versus D, E, and F) align more clearly with the reference axes, interpretability

of the factors is enhanced. Figure 5 (B) shows the two axes—X� and Y�—after rota-

tion. With the axes turned, the factor loadings are different than they were prior to ro-

tation. The loadings on the rotated factors are those shown in Table 1. For example,

test A has a loading of .84 on Factor I after rotation, and a loading of .21 on Factor

II. After rotation, tests A, B, and C are aligned with Factor I but not with Factor II,

while tests D, E, and F are aligned with Factor II but not with Factor I. Now, by ex-

amining what tests A, B, and C have in common, and what tests D, E, and F have in

common, we can infer the meaning of the factors.

The goal in rotating factors is to achieve factors that are as pure as possible.

That is, we want a rotation solution such that variables have high loadings on one and
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only one factor; we also want loadings as close to 1.00 (or �1.00) as possible for the

variables aligned with a factor, and loadings as close to 0.00 as possible for variables

not aligned with that factor. Ideal factor solutions are difficult to achieve in reality.

TIP: Factor rotation does not alter the percentage of total variance
accounted for by the factors selected for rotation, but it does reallocate
variance to those factors. For the 11 parenting items, a total of 52.2% of
the items’ variance was accounted for by the first three factors using PCA,
as shown in Figure 2. In the unrotated matrix, the percent of variance
accounted for by the first three factors was 26.9%, 15.4%, and 9.9%,
respectively. In the rotated PCA matrix, the respective variance accounted
for by the three factors was 21.3%, 16.6%, and 14.3%—which still 
totals 52.2% (not shown in figures).

Methods of Factor Rotation

Just as there are multiple methods of factor extraction, so too there are multiple

methods of factor rotation. The methods fall into two major groupings—orthogonal

rotation and oblique rotation.

Orthogonal rotation results in factors that are uncorrelated with one another.

During factor extraction, the factors are necessarily orthogonal because each new

linear combination is formed such that it is uncorrelated with previously created fac-

tors. When factors are orthogonal they are at right angles—they are independent of

one another. In Figure 5 (A), for example, the unrotated factors are orthogonal, and

this orthogonality was maintained during rotation as shown in Figure 5 (B).

Oblique rotation, by contrast, results in factors that are correlated with one another.

Oblique rotation allows the axes in the rotated factor space to depart from a 90° angle,

thereby permitting the variables to be more closely aligned with factors. Figure 6

illustrates how an oblique rotation might look for the six aptitude tests. The X� and Y�
axes are at an acute angle because they are allowed to line up more closely with the two

variable clusters. Tests A, B, and C now have higher loadings on Factor I but lower

loadings on Factor II than they did with orthogonal rotation. For example, test F has a

loading of about .96 on Factor II, but a loading close to zero on Factor I; with orthogo-

nal rotation, the loadings were .91 and .27, respectively.

Three major techniques, which use different statistical criteria, can be used for

orthogonal rotation. The most widely used type of orthogonal rotation is varimax
rotation. The goal of varimax rotation is to maximize the variance of the loadings

within factors, across variables. The varimax method strives to minimize the number

of variables that have high loadings on a factor, which facilitates interpretation.

Another orthogonal method is quartimax rotation, which emphasizes the simplifi-

cation of variables rather than factors. The goal of the quartimax method is to in-

crease the dispersion of the loadings within the variables, across factors. Equimax
rotation attempts to combine the goals of varimax and quartimax rotation—its goal

is to simultaneously simplify factors and variables.

Example of a varimax rotation:

Yarcheski, Mahon, Yarcheski, and Hanks (2008) factor analyzed items from an ex-

isting scale that measures adolescents’ interpersonal relationships, the Tilden

Interpersonal Relationship Inventory. They extracted factors via PCA, and used
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FIGURE 6 Oblique factor rotation.

varimax rotation. Their analysis confirmed two factors that are consistent with theo-

ries underlying the instrument—a social support factor and a conflict factor.

When oblique rotation is used, the method is usually one called direct oblimin
rotation; another alternative in SPSS is promax. Oblique rotations result in both

a pattern matrix and a structure matrix. A pattern matrix indicates partial regres-

sion coefficients between variables and factors, while the structure matrix indicates

factor–variable correlations. With orthogonal rotation, the correlations and regres-

sion coefficients are identical, so only one factor matrix is needed to display the

results. With oblique rotation, the two matrices are not the same because of correla-

tions between factors. The pattern matrix is the one used to interpret factors. Oblique

rotation also produces a factor correlation matrix, which displays the correlation

coefficients for each factor with every other factor, like a correlation matrix.

TIP: When using direct oblimin rotation, users must specify a value for
delta, which is an index that affects the amount of correlation between
factors that you are willing to permit. The default for delta in SPSS is 0,
which allows solutions to be moderately correlated. Negative values for
delta result in nearly orthogonal rotations, while values near �1 can yield
high correlations among rotated factors.

There is some controversy regarding which rotation approach is preferable.

Those who advocate the use of orthogonal rotation claim that it leads to greater the-

oretical clarity. The use of orthogonal rotation also makes it easier to compare factor

structures across studies. Advocates of oblique rotation point out that in the real

world, the underlying dimensions of a construct are usually correlated. For example,

there is a tendency for people who have high scores on verbal aptitude tests to have
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higher-than-average scores on quantitative aptitude tests. Yet, oblique rotation some-

times results in peculiarities that are difficult to interpret. One approach is to use

oblique rotation first and to inspect the factor correlation matrix. If the correlations

are substantial, then orthogonal rotation might not make sense, but if the correlations

are more modest (e.g., all under .30), then orthogonal rotation should probably be

pursued. In any event, with a good, factorable data matrix, conclusions are often sim-

ilar regardless of which method of rotation is used.

Example of an oblique rotation:

Maposa and Smithbattle (2008) evaluated the grandparents’ version of the

Grandparent Support Scale for Teenage Mothers, originally a 19-item scale to assess

perceptions of grandparental actions that support or imperil a teenage mothers’ care

of her baby. Principal axis factoring with oblique rotation yielded two conceptually

clear factors (responsive family relationships and adversarial family relationships),

but resulted in the elimination of 5 of the 19 items.

INTERPRETING AND REFINING FACTORS

Once decisions about extraction method, number of factors, and rotation method

have been made, the factor analysis program will produce results that require

interpretation—and, often, results that suggest the need to test alternatives to help refine

the factor solution.

Interpreting Rotated Factor Matrices

When orthogonal rotation is used, the rotated factor loadings are correlations be-

tween the variables and the factors. These loadings, when squared, indicate the

amount of variance in a variable that is accounted for by the factor. Variables with

high loadings on a factor, then, are the ones that need to be scrutinized to help iden-

tify the underlying dimension represented by the factor.

Usually loadings with an absolute value of .30 or greater are considered suffi-

ciently large to attach meaning to them—although .40 is sometimes suggested as the

cutoff value. The higher the loading, the better the variable is in capturing the essence

of the factor. Loadings in excess of .70 (which means that there is at least 50% over-

lapping variance between the variable and the factor) are especially desirable for inter-

pretive purposes. Ideally, there will be at least one marker variable in each factor. A

marker variable is one that is highly correlated with one and only one factor and hence

helps to define the nature of the factor. Marker variables tend to be robust—that is,

they tend to load on a factor regardless of the method used to extract and rotate factors.

TIP: The process is similar for oblique rotation, although interpretation of
the coefficients is less straightforward. The loading in the pattern matrix is
not a correlation, but rather an index of the unique relationship between
the variable and the factor (i.e., a partial regression coefficient). The
coefficients in the structure matrix are correlations between variables and
factors, but they are inflated by the overlap between factors. For example,
a variable may correlate with one factor through its correlation with
another related factor, rather than directly. For this reason, the pattern
matrix is usually more interpretable than the structure matrix.
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Rotated Component Matrixa

Component

1 2 3

4. Given up more of my life for child’s needs than expected .658

11. Raising a child more work than pleasure .649

3. Many things child does bother me a lot .618

6. I feel trapped by responsibilities as parent .600

2. Child seems harder to care for than most .586

5. Even when tired/upset, I show child a lot of love .764

10. I get a lot of joy out of being a mother .753

1. Best part of my day spending time w/child .748

9. Seldom annoyed or frustrated with child .839

8. I often feel angry with child .380 .645

7. Sometimes lose patience w/child, don’t listen .491 .509

Extraction Method: Principal Component Analysis
Rotation Method: Varimax with Kaiser Normalization
aRotation converged in five iterations.

FIGURE 7 SPSS printout for rotated orthogonal factor matrix: PCA with three factors.

To illustrate the interpretive process, let us assume we factor analyzed the 11

parenting items with a principal components extraction and orthogonal (varimax) ro-

tation of three factors. SPSS output for the resulting rotated component matrix is

shown in Figure 7. For this output, we instructed SPSS to list the items in descend-

ing order of factor loading magnitude, and to suppress printing factor loadings less

than .30 so that interpretation would be easier.

The results in Figure 7 are far from ideal, because two items (8 and 7) have

loadings greater than .30 on Factor I and Factor III. Yet we can begin to glean a sense

of the meaning of the underlying constructs from this output. Five variables (items 4,

11, 3, 6, and 2) have high loadings on Factor I alone, and these items seem to capture

something we might call parenting stress. For example, the item with the highest

loading (.66) is item 4: “I have given up more of my life to meet my child’s needs

than I ever expected.” Even the two items with loadings greater than .30 both on

Factors I and III have content suggesting the stressful nature of the parenting role

(e.g., item 8, “I often feel angry”).

TIP: When an item loads highly on two factors, researchers must decide
what to do. Some researchers assign an item to one factor versus the other
if the difference in loadings is at least .20 higher on the factor to which it
will be assigned. In our example, this criterion would not be met for item 7
(“lose patience”)—the two loadings are of similar magnitude.

Three variables have loadings with absolute values greater than .30 on Factor II:

items 5, 10, and 1. The main thrust of these items appears to concern parental enjoy-
ment. For example, the item with the highest loading (.76) is item 5: “Even when I’m

tired or upset I show my child a lot of love.”
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Three items have high loadings on Factor III: items 9, 8, and 7. This factor is

more difficult to interpret, but the apparent marker variable is item 9, which has a

loading of .839: “I am seldom annoyed or frustrated with my child.” The other two

items concern feeling angry and losing patience with the child. Perhaps these items

capture a more severe level of parent–child conflict than is captured by the first

factor—but this interpretation needs further exploration.

Evaluating and Refining the Analysis

If all three factors were similar to Factor II in the initial analysis—that is, if all three

factors had three or more variables that clearly and strongly loaded on a single

factor—we might stop at this point and conclude that we had achieved a good solution.

However, given the results in Figure 7, it is prudent to explore other solutions. This

means trying alternative methods of extraction and rotation, and examining the re-

sults with different numbers of factors. In such situations, researchers take steps to

evaluate which solution yields the most parsimonious and interpretable results, or

that is most consistent with an underlying theory.

In our example of 11 parenting items, the original factor solution is problematic

because of multiple high loadings for two items and a strained interpretation of the

third factor. We will describe efforts to achieve the best possible factor solution with

our data, but steps are not necessarily in a fixed order for every problem—and we

could have proceeded somewhat differently as well. Pett and colleagues (2003) offer

good suggestions for proceeding with refinement of factors.

STEP 1: ALTERNATIVE FACTOR ROTATION One possible explanation for the high

loadings on multiple factors is that orthogonal rotation imposed unrealistic con-

straints on the ability of the two items in question (7 and 8) to clearly align with one

factor. Thus, we began our exploration by rerunning the factor analysis as a PCA

with direct oblimin rotation, with delta set to 0. We do not show the item-factor re-

sults because they look very similar to those obtained with orthogonal rotation:

Items 7 and 8 loaded highly on both Factors I and III, for example, and the highest

loading on Factor III was for item 9 (“seldom annoyed”). Moreover, we learned that

the three factors, when allowed to deviate from a 90° angle, were not highly correlated

with each other, as shown in Figure 8. The highest correlation (.23) was between

Factors I and III. Thus, it does not appear that oblique rotation provides a more inter-

pretable solution than orthogonal rotation.

STEP 2: ALTERNATIVE FACTOR EXTRACTIONS Our next step was to explore

methods of analyzing common factor variance, using different methods of factor

Component Correlation Matrix

Component 1 2 3

1 1.000 �.089 .234

2 �.089 1.000 �.112

3 .234 �.112 1.000

Extraction Method: Principal Component Analysis.
Rotation Method: Oblimin with Kaiser Normalization.

FIGURE 8 SPSS printout for PCA component correlation matrix for oblique rotation.
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TABLE 2 Summary of Total Variance Explained After Extraction, Alternative Methods of
Factor Extraction

Method

Sum of Squared Loadings
(Eigenvalues)

Percent of Variance
Explained

Factor I Factor II Factor III Factor I Factor II Factor III

Principal Components 2.96 1.69 1.09 26.9 15.4 9.9

Principal Axis 2.32 1.06 .39 21.2 9.6 3.5

Maximum Likelihood 2.32 1.06 .39 21.0 9.6 3.6

Alpha 2.30 1.07 .40 20.9 9.7 3.6

Unweighted Least Squares 2.31 1.06 .39 21.1 9.6 3.5

extraction. We tried four different methods (principal axis, maximum likelihood,

alpha, and unweighted least squares), and found substantial similarities among

these extraction methods—but some noteworthy differences between them and

PCA. Consider the information in Table 2, which summarizes total variance

explained in the three factors whose eigenvalues were initially greater than 1, for all

five factor extraction methods. Note that the top row, for PCA, is a recap of what is

shown in Figure 2. The three factors explain less variance in the four common fac-

tor methods than in PCA—and that is to be expected because these methods ignore

specific and error variance. Of particular note in this table is that Factor III accounts

for under 5% of explained variance with the common factor methods, and in each

case the eigenvalues (sum of the squared loadings) on this factor has sharply de-

clined to .39.

Another important difference between PCA and the common factor methods

concerned item communalities. In PCA, we found that the item with the highest com-

munality was item 9 (“seldom annoyed”), with a communality of .707 (Figure 4.). Yet

this variable had the lowest communality in the four common factor methods (not

shown in figure). For example, its communality in the principal axis extraction

method was only .124. This, in turn, made us suspicious of item 9—and also of

Factor III. Factor III barely met the criterion for a higher-than-1 eigenvalue even in

PCA (1.09), and performed weakly in the other extraction methods. These observa-

tions led us to our next set of analyses.

STEP 3: ALTERNATIVE NUMBER OF FACTORS We next examined two-factor

solutions using both PCA and principal axis factoring with orthogonal rotation.

Figure 9 shows the SPSS printout for the rotated factor matrix from the principal

axis analysis. The results are more clearcut than they were previously. Seven

items had high loadings on Factor I and three items had high loadings on Factor

II. We can more clearly see that the first factor suggests a construct of parenting
stress (or parenting frustrations) and Factor II suggests a construct of parental
enjoyment. The item that we previously identified as potentially problematic

(item 9, “seldom annoyed or frustrated”) did not have high loadings on either fac-

tor.

This analysis suggests discarding item 9. Let us explore a bit further to find out

what might be wrong with this item. If we think about the content of item 9, we might

be surprised that it was not associated with Factor I, because it concerns frustrations
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Rotated Factor Matrixa

Factor

1 2

7. Sometimes lose patience w/child, don’t listen .623

8. I often feel angry with child .584

3. Many things child does bother me a lot .581

6. I feel trapped by responsibilities as parent .551

2. Child seems harder to care for than most .505

4. Given up more of my life for child’s needs than expected .465

11. Raising a child more work than pleasure .397

9. Seldom annoyed or frustrated with child

1. Best part of my day spending time w/child .633

5. Even when tired/upset, I show child a lot of love .620

10. I get a lot of joy out of being a mother .569

Extraction Method: Principal Axis Factoring.
Rotation Method: Varimax with Kaiser Normalization.
aRotation converged in 3 iterations.

FIGURE 9 SPSS printout for rotated orthogonal factor matrix: principal axis factoring
with two factors.

of parenthood—or rather, the absence of frustrations. We might expect the item to

load on Factor I with a negative sign. For example, mothers who agree that they are

seldom annoyed or frustrated with their child should be less likely to agree that are

often angry with their child—these two items suggest opposite parental responses to a

child. Yet, when we look at the loadings on the original Factor III in Figure 7, we see

that the loadings for both items are in the same direction.

If we had paid closer attention to the correlation coefficients in the original

matrix during the stage of evaluating factorability, we might have had early suspi-

cions of problems with item 9. The correlations between this item and the other

10 items were all fairly low, ranging from �.02 to .32. The strongest correlation was, in

fact, between “seldom annoyed” and “often angry.” What could this positive correla-

tion (.32) mean? We suspect that many respondents had conceptual difficulties with

item 9—perhaps they did not see the word seldom, did not comprehend it, or, more

likely, did not understand how to correctly respond on a “not-at-all true” to “com-

pletely true” scale to an item with a time-referencing qualifier such as “seldom.” In

fact, all three items in Factor III have such a qualifier—“often” in item 8 and “some-

times” in item 7. In the parlance of factor analysts, we could call the original Factor III

a method factor—that is, a factor that captures a methodologic construct and not a

substantive one. In this instance, it seems likely that this method factor relates to

some confusion about integrating a time dimension with a true–false dimension, and

that the confusion was especially acute with regard to seldom, a word that is not es-

pecially colloquial.

When item 9 is removed from the factor analysis, the final rotated factor ma-

trix for the remaining 10 items with a two-factor solution looks very much like

Figure 9, with only minor changes in loadings. The percent of variance accounted for

by the two factors actually increases somewhat with item 9 removed, with two
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factors explaining 45.5% of the initial variance rather than 42.3%. Still, we would

ideally want our factors to account for more variation in item responses. We may

wish to pursue a path of further scale development—for example, adding more items

with content on parental enjoyment to strengthen the second factor. Further evalua-

tion of the two factors for use in subsequent analysis involves an assessment of inter-

nal consistency, which we describe in a later section.

Factor Scores

Researchers typically use the information from a factor analysis to create new vari-

ables. One approach is to create factor scores, which are the participants’ scores on

the abstract dimension defined by a factor. Factor scores are estimates of the scores

participants would have received if it were possible to measure the constructs di-

rectly.

Factor scores can be obtained through factor analysis programs. Researchers

who are using factor analysis results immediately as part of a substantive study

(rather than as a methodological study focused on scale development) can instruct

the computer to create new factor score variables for each study participant, and

these variables can then be used as independent or dependent variables.

SPSS offers three methods for calculating factor scores, but they all involve as-

signing weights to items, multiplying the weight times the original value on each

item in the factor analysis for the particular participant, and then summing to arrive

at a composite score. The three methods are regression, Anderson-Rubin, and

Bartlett, each of which uses somewhat different methods of solving for the factor

scores. All three methods, however, result in factor scores that are standardized—

that is, they all have means of 0.0 and SDs of 1.0. If PCA was used as the factor ex-

traction method, all three methods yield the same factor scores—and PCA has the

advantage of calculating exact scores, rather than estimates. The regression approach

to estimating factor scores is perhaps the most widely used method because it results

in the highest possible correlation between factors and factor scores.

In a more typical scenario, researchers use factor analysis as a tool for creating

or testing multi-item scales that capture important constructs. In such situations, re-

searchers want to measure the constructs using a method that can be replicated by

others with different samples of participants. A widely used method is to create com-

posite scales using only those items with high loadings on the factor. For example, a

Parental Stress scale score would involve adding together responses to items 2, 3, 4,

6, 7, 8, and 11, which are the items with high loadings on Factor I (Figure 9). A

Parental Enjoyment scale could be created by adding responses to items 1, 5, and 10.

If this method is adopted, attention needs to be paid to the sign of the loadings:

Items with negative loadings should be reversed prior to addition. Item reversals
can be accomplished by the following:

• If the minimum score on the item is 1 (for example, 1 � strongly agree, 7 �
strongly disagree), subtract the raw score from the maximum score plus 1.

• If the minimum score on the item is 0 (for example, 0 � not at all true to 10 �
completely true), subtract the raw score from the maximum score.

We did not have any negative loadings in our parenting items, but if (for example)

item 11 had said that “Raising a child is more pleasure than work” (rather than

“more work than pleasure”) and its loading on Factor I was negative, we would need

to reverse-score item 11 before summing items to calculate a total Parenting Stress

score. In this example item responses were on a 0-to-10 scale, so we would subtract
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each original score from 10 to reverse the scoring on item 11. A person who respond-

ed 0 originally would have a score of 10 after reversal. Reverse scoring helps to en-

sure that all items are contributing properly to the value of the score on the construct.

INTERNAL CONSISTENCY RELIABILITY ANALYSIS

Almost invariably, researchers who perform factor analysis to create composite

scales also perform a reliability analysis. And, many researchers who are simply

using an existing scale to measure a construct of substantive interest also compute

reliability coefficients to assess the quality of their measures. There are many differ-

ent approaches to a reliability analysis (Polit and Beck, 2008; Waltz, Strickland, and

Lenz, 2005), but the approach most often used to assess reliability of a multi-item

scale is an evaluation of its internal consistency reliability.

Basic Concepts of Reliability

In an ideal world, the instruments that researchers use to measure abstract constructs

would capture perfectly the variables of interest—that is, actual measurements

would yield participants’ true scores on the target constructs. In reality, virtually all

scores contain errors of measurement. Measurement errors can occur if, for exam-

ple, people complete a scale haphazardly, misrepresent their opinions, misinterpret

the questions (as, perhaps, with the “seldom annoyed” item in our factor analysis

example), and so on. A person’s actual score on a scale is the difference between the

hypothetical true score and errors of measurement.

In multi-item scales, measurement error often occurs because of inadequacies

in the sample of items used in the scale. Just as larger samples tend to be more repre-

sentative of a population than smaller ones, so do longer scales (those with more

items) tend to be more “representative” of a hypothetical universe of all potential

items measuring a construct than shorter scales. Internal consistency reliability re-

lates to the issue of sampling adequacy of the items forming a composite scale.

Indexes of internal consistency estimate the extent to which different subparts of an

instrument (i.e., items) are reliably measuring the critical attribute—the extent to

which items are converging on the underlying construct. The stronger the reliability,

the stronger is the correlation between obtained scores and true scores.

Cronbach’s Alpha

There are different approaches to measuring internal consistency reliability, but the

most widely used method is to compute an index called Cronbach’s alpha (or

coefficient alpha). Cronbach’s alpha focuses on variability—in this case, variability

of both individual items and composite scale scores. A conceptual formula for

Cronbach’s alpha is as follows:

where a � Cronbach’s alpha

k � number of items

The normal range of values for coefficient alpha is between .00 and �1.00.

Higher values reflect better internal consistency. If you constructed a scale from ran-

dom questions, you would get an alpha close to 0. If the variance of the scale is much

 α �
k

k � 1
c1 �

© Item variances

Scale variance
d  
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larger than the sum of item variances—which occurs when the items are measuring

the same construct and are correlated—alpha is closer to 1.0.

TIP: Alpha coefficients are typically computed from raw item scores, but
SPSS also computes a coefficient called standardized alpha. This
coefficient is computed by first standardizing individual items to have a
mean of 0 and a variance of 1. Regular and standardized alpha values
usually are similar.

For group-level comparisons, coefficients in the vicinity of .70 to .75 may be

adequate (especially at the subscale level), but coefficients of .80 or greater are highly

desirable. Reliability coefficients are important indicators of an instrument’s quality,

and high reliability is critical to success in hypothesis testing. Unreliable measures

reduce statistical power and hence increase the risk of Type II errors. If data fail to

support a hypothesis, one possibility is that the instruments were unreliable—not

necessarily that the hypothesized relationships do not exist.

Alpha is an estimate of how much “true score” versus “error” is in the scale. In

fact, we can go further and say that alpha can be directly interpreted as the propor-

tion of true variability to total variability in scores. If, for example, coefficient alpha

were .85, then 85% of the variability in obtained scores would represent true individ-

ual differences on the underlying construct, and 15% of the variability would reflect

random, extraneous fluctuations. Looked at in this way, it should be clearer why

scales with low internal consistency are risky to use.

Diagnostic Information in Reliability Analysis

When reliability analysis is done by computer, as it almost always is, programs pro-

vide not only the value for coefficient alpha, but also information that can be used to

further understand and refine scales. In this section, we will look at some SPSS out-

put for a reliability analysis of the parenting items used in the factor analysis exam-

ple described earlier in this chapter.

The SPSS reliability program offers options for many descriptive statistics, for

both items and scales. For example, item and scale means and standard deviations

can be calculated, and a correlation matrix for all items can be produced. An infor-

mative piece of descriptive information is the mean of all interitem correlation

coefficients. If the items are all measuring the same construct, this value should be

moderate. The mean interitem correlation for the seven items on the Parenting Stress

scale was .283, and the mean interitem correlation for the three items on the Parental

Enjoyment scale was .366 (not shown in figures).

The reliability analysis for these two scales indicated that coefficient alpha was

.725 for Parenting Stress and .632 for Parental Enjoyment. Reliability for the

Parenting Stress scale is marginally acceptable, but the three-item Parental

Enjoyment scale would be risky to use. Even though the average interitem correla-

tions for this scale was reasonably high (.366), it is difficult to achieve good reliabil-

ity on a scale with only three items. The reliability of this scale needs to be improved,

and it should be fairly easy to do so by adding more items with relevant content.

Information that is especially interesting in a reliability analysis is the item-

total statistics—that is, information about how each item relates to the total scale.

For the full seven-item Parenting Stress scale, the mean scale score was 25.85 with a

variance of 225.50. Figure 10 presents the SPSS printout for the item-total statistics

for these seven items. (We used the SPSS commands Analyze ➜ Scale ➜
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Reliability

Scale: Parenting Stress

Item-Total Statistics

Scale
Mean if Item

Deleted

Scale 
Variance if 

Item Deleted

Corrected 
Item-Total
Correlation

Squared 
Multiple

Correlation

Cronbach’s
Alpha if Item

Deleted

2. Child seems harder to 
care for than most

23.1736 174.797 .424 .204 .696

3. Many things child does
bother me a lot

22.1851 169.455 .494 .279 .679

4. Given up more of my life
for child’s needs than
expected

19.9471 170.726 .385 .159 .708

6. I feel trapped by
responsibilities as parent

22.9041 167.522 .478 .250 .683

7. Sometimes lose patience
w/child, don’t listen

23.0116 173.455 .502 .313 .679

8. I often feel angry with
child

23.8298 184.924 .461 .272 .692

11. Raising a child more 
work than pleasure

20.0198 171.979 .360 .134 .715

FIGURE 10 SPSS printout for reliability analysis, parenting stress items: item-total statistics.

Reliability Analysis to obtain this printout.) In this figure, the second and third

column show what the scale mean and variance would be, respectively, if each item

listed in column 1 were removed from the scale. The column labeled “Corrected

Item-Total Correlation” presents the Pearson’s r between scores on the item in the

specified row and scores on the scale with the item removed. We can see that item 11

(“more work than pleasure”) has the lowest item-total correlation (.360) and item 7

(“lose patience”) has the highest (.502). Items that are good measures of the underly-

ing construct should be highly correlated with the other measures, so if any of these

correlations are very low, they may be good candidates to drop from the scale.

The next column (“Squared Multiple Correlation”) presents additional diag-

nostic information about individual items. This column shows values of R2 that are

obtained when scores on each item are “predicted” from scores on all the other

items. If items are capturing the same underlying construct as all the other items on

the scale, this should be reflected in high values of R2. In this example, item 11 has a

relatively low value (.134), whereas item 7 has a much stronger value (.313). This

pattern is consistent with the information in the previous column.

The final column is of particular interest. It presents values for what

Cronbach’s alpha would be if each item were deleted. For the seven-item scale, alpha

was .73 (standardized alpha was also .73). Removal of any item would reduce

alpha—for example, removal of item 2 (“child harder to care for than most”) from

the scale would reduce alpha from .73 to .696. Removal of item 11—the item that

appears to be making the smallest contribution based on other diagnostics—would

reduce alpha to .715. Researchers creating new scales for general use sometimes are
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willing to make small sacrifices in reduced reliability (e.g., from .73 to .72) to create

a less burdensome scale. And, if the reliability analysis reveals that alpha would

increase by discarding an item—which sometimes happens—then researchers may

opt for the smaller set of items. This decision would not necessarily be a good one,

though, if the scale was a widely used measure and comparisons of scale means

across studies were desired.

Example of a reliability analysis:

Moser and colleagues (2009) tested the psychometric properties of an existing scale

of perceived control (the Control Attitudes Scale-Revised or CAS-R) with three

groups of patients with cardiac illness. Cronbach’s alpha values on the eight-item

CAS-R ranged from .72 in the acute myocardial infarction group to .76 in the heart

failure group. The corrected item-total correlation coefficients were greater than .30

for all items, in all three patient groups.

RESEARCH APPLICATIONS OF FACTOR ANALYSIS

Factor analysis, once considered a sophisticated technique used primarily by highly

experienced investigators, has come to be an analytic tool used by many researchers.

Reliability analysis is even more widely used—indeed, most researchers who use

multi-item scales to measure variables of interest report psychometric information

from instrument development work, and also compute Cronbach’s alpha with their

own study data. This section focuses on major applications of factor analysis and

discusses methods of reporting factor analytic and reliability results.

The Uses of Factor Analysis

Factor analysis is an important methodological and substantive tool. Although factor

analysis requires researchers to make many decisions and involves some subjectivity

in the decision-making and factor-interpretation process, it is an important approach

to understanding and measuring constructs.

1. Data reduction If a researcher has multiple measures of key variables (often

the dependent variables), factor analysis is a good way to streamline the pri-

mary analyses. Our earlier example of six aptitude tests that yielded two strong

factors illustrates this data reduction application of factor analysis.

2. Instrument development A primary application of factor analysis is to de-

velop instruments to measure constructs of interest to researchers or clinicians.

Researchers often begin with a large pool of items that are derived on the basis

of theory, adaptations from other instruments, or in-depth interviews.

Typically, items are then reviewed by experts who evaluate the items’ content
validity, and items remaining after this review are administered to a sample of

respondents. Responses are then factor analyzed to assess which items should

be used to create summated scales. After appropriate psychometric analyses

are performed, the scales are generally used by other researchers in subsequent

investigations of the constructs.

3. Instrument validation Factor analysis has come to be used frequently as a

method of construct validation—that is, of evaluating the extent to which the

factors revealed by the factor analysis correspond to a hypothesized dimen-

sionality of the construct. Of course, other methods of construct validation are

important, but factor analysis can lend supporting evidence about the
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instrument’s correspondence to latent variables underlying the items.

(Confirmatory factor analysis is increasingly used for this purpose.) Factor

analysis can also be used to validate previously developed instruments. This

often involves factor analytic comparisons—for example, the cross-validation

of a factor structure in a replication study or a confirmatory study to ascertain

that the factor structure of an instrument is appropriate for different groups

than the group used to develop the instrument.

The Presentation of Factor Analysis in Research Reports

When reporting the results of a factor analysis, researchers need to communicate not

only the results, but also the decisions that produced them. The following aspects of

the analytic procedures usually should be documented in the text of the report:

• The variables in the analysis

• The number of participants in the sample

• Any limitations that might exist and how they were addressed (outliers, miss-

ing data problems, low intervariable correlations)

• Information on sampling adequacy

• Method used to extract factors (and a rationale if an uncommon method was

used)

• Criteria used to determine the number of factors

• Method used to rotate factors, and rationale for that decision

• Alternative methods of extraction and rotation that were explored

• Minimum value of loadings used to interpret factors

• Items that were deleted and the rationale for those decisions

• Method used to create factor scores, if applicable

Tables are used to summarize key results of the final factor analysis—most

often, the rotated factor matrix (or, the pattern matrix for oblique rotations). The

table typically lists the items, and specifies the number of factors, factor loadings,

and number of cases in the analysis, at a minimum. Some researchers also present

percentages of variance explained by each factor, eigenvalues, and communalities.

Tables are often omitted if the factor analysis yields one strong factor.

We will use results from a factor analysis of 20 items that measure children’s

positive behaviors (from a real dataset) to illustrate a factor analysis presentation.

Table 3 lists the 20 positive behavior items in the order that facilitates interpretation

of the factors—not in the order items were presented to respondents. Most tables use

a convention to highlight important loadings, which are usually presented to two

decimal places. Here, we have bolded loadings that are greater than .40. Some au-

thors underline important loadings, some completely omit loadings below a cutoff

value (as in the SPSS printout in Figure 7), and others still use boxes to surround a

cluster of variables loading highly on a factor. The point is to use a method that will

help readers understand the basis for interpreting the factor.

The text is used to summarize methodologic decisions, to highlight the impor-

tant features of the analysis, and to offer the researcher’s interpretation of the factors.

Here is an illustration of how the results from the factor analysis in Table 3 might be

described in the text:

The 20 Positive Behavior items were factor analyzed with a sample of 575 mothers,

using principal components analysis for factor extraction. Preliminary analysis indi-

cated moderately high factorability—Bartlett’s test was significant at p � .001 and

the overall value of the Kaiser-Meyer-Olkin test was .81.
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TABLE 3 Example of a Factor Analysis Table for a Report

Variable: My Child . . . 

Factor Loadings Communality

1 2 3 (h2)

Is obedient, follows rules .76 .32 .13 .69

Is patient if I am busy .73 .05 .19 .58

Is calm, easy-going .70 .39 .01 .65

Sticks with an activity .68 .06 .32 .57

Is not impulsive .66 .06 .08 .44

Does what I tell him/her .65 .29 .17 .54

Waits his/her turn .61 .32 .08 .48

Is eager to please .60 .32 .23 .52

Is able to concentrate .53 .28 .29 .44

Tends to give, lend, share .52 .39 .18 .46

Is warm, loving .25 .78 .05 .67

Is cheerful, happy .29 .68 .10 .55

Is curious, exploring .00 .66 .32 .54

Is helpful, cooperative .40 .58 .30 .57

Is well-liked by children .37 .55 .28 .52

Shows concern for others .31 .55 .30 .48

Tries to be independent .16 .19 .81 .72

Is self-reliant .09 .40 .69 .64

Is self-assertive .23 .06 .67 .51

Can find things to do on own .23 .38 .44 .39

Eigenvalue 8.25 1.65 1.10 11.00

Percent of Variance Explained 41.3 8.3 5.5 55.1

NOTE: Varimax was used for factor rotation. All loadings greater than .40 are in bold.

Varimax Rotated Factor Matrix for Principle Components Analysis of
20 Positive Behavior Items for Children Ages 6–10 (N � 575)

Using a minimum eigenvalue of 1.0 as the extraction criterion for factors,

three factors that accounted for a total of 55.1% of the variance were extracted.

Communalities were fairly high, ranging from .39 to .69, as shown in Table 3.

The three factors were orthogonally rotated using varimax. (Oblique rotation

yielded virtually identical results and thus orthogonal rotation was retained be-

cause of conceptual simplicity and ease of description.) The items in Table 3 are

ordered by size of loading to facilitate interpretation of the factor matrix.

Overall, the factor structure that emerged was reasonably clear and inter-

pretable. The first factor, which accounted for 41.3% of the variance, had

11 items with loadings above the cutoff of .40. This factor appears to capture the

child’s ability to be disciplined, self-controlled, and obedient. We called this fac-

tor Self-Control. Ten of the 11 items had loadings in excess of .50 on the factor;

only one (“my child is helpful, cooperative”) also had a loading greater than .40

on another factor.

The second factor had seven items with loadings above .40, and six of these

items had high loadings only on Factor 2. The theme of this factor involves the
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child’s social interactions—his or her tendency to show warmth and concern for

other people. We call this factor Social Competence.

Four items had high loadings on the third factor. Although this factor

accounted for only 5.5% of the variance, it was relatively well defined, with a

clear-cut marker variable that had a loading of .81. This factor captures a dimen-

sion of independence and self-reliance, and has been named Autonomy.

For subsequent analysis, factor scores were created by summing together

scores on the items most clearly associated with the factors, with unit weighting.

Thus, the sum of responses to the first block of 10 items formed scores on a Self-

Control scale (Cronbach’s alpha reliability � .88); the second block of six items

was used to compute scores on a Social Competence scale (alpha � .86); and

the third block of four items was used to compute scores on an Autonomy scale

(alpha � .76).

This example illustrates a situation in which several items had fairly high load-

ings on more than one factor. In this case, these items were assigned to the factor

(scale) with the highest factor loading.

Research Example

Detailed results from a factor analysis are most likely to

be reported in the context of a methodological study fo-

cused on instrument development or instrument valida-

tion, as in this example.

Study: “Development of an instrument to assess per-

ceived self-efficacy in the parents of infants” (Črnčec,

Barnett, & Matthey, 2008).

Study Purpose: The purpose of this study was to exam-

ine the psychometric properties of a new 15-item scale

to measure perceived parental self-efficacy among par-

ents with infants—the Karitane Parenting Confidence

Scale (KPCS).

Methods: The researchers administered the original

18 items to a sample of 187 Australian mothers of infants

younger than 12 months of age. Response options for the

18 items of perceived parental self-efficacy were on a

four-point scale of frequency: Hardly ever, Not very
often, Some of the time, and Most of the time. Initial in-

spection of the items led the researchers to delete three

items because of problems with score variability. The re-

searchers also made an a priori decision to eliminate

items if inter-item correlations exceeded .75, to avoid

multicollinearity, but no items were excluded on that

basis. Thus, 15 items (Table 4) were factor analyzed.

The researchers indicated that there were no outliers,

and that there were only four cases of missing item data.

These missing values were replaced with item means.

The factor analysis was deemed to have adequate sample

size, with about 12.5 respondents per item.

Analysis: Principal components analysis was used to ex-

tract factors. There were four factors with eigenvalues

greater than 1.0 in the original unrotated matrix. The re-

searchers felt, however, that the scree test results sup-

ported a three-factor solution. After examining both

three- and four-factor results, they found the three-factor

results to be more interpretable. Varimax rotation was

used to rotate the three factors.

Results: The three-factor solution explained 49.3% of

the total variance in item responses. The large first factor

explained 30.1% of the variance. Item communalities

ranged from .36 to .67. Items were considered associated

with factors if they had loadings of .40 or higher. Using

this criterion, high loadings were found for eight items

on Factor I, six items on Factor II, and two items on

Factor III. One item (“confidence in establishing a sleep

routine”) had a loading greater than .40 on Factors I and II,

but it was retained on Factor I, on which it had the high-

er loading, because of its “critical face validity”. The re-

searchers interpreted Factor I as the Perceptions of par-
enting ability subscale, Factor II as the Perceived
parenting support subscale, and Factor III as the

Perceptions of child development subscale. The re-

searchers felt justified in combining scores on the three

subscales into a total scale score because there were

moderately high correlations between scores on the

three factors and total scores, ranging from .47 for

Factor III to .91 for Factor I. Cronbach’s alpha for the

overall scale was .81, and subscale reliabilities ranged

from .44 for Factor III to .80 for Factor I.
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TABLE 4 Varimax-Rotated Loadings, Principal Components Analysis 
of the Karitane Parenting Confidence Scale Items (N � 187)

Item
Questionnaire 

Ordering

Factora

I II III

I understand what it is my baby is
trying to tell me.

(5) .73

I know what to do when my baby
cries.

(4) .72

I can soothe my baby when he/she
is distressed.

(6) .68

I can settle my baby. (2) .67

If my baby has a cold or fever, I
am confident about handling it.

(8) .63

I am confident about playing with
my baby.

(7) .61

I am confident helping my baby
establish a good sleep routine.

(3) .50 .41

I can make decisions about the
care of my baby.

(11) .47

I feel sure people will be there
when I need support.

(15) .71

I feel I am doing a good job as a
mother.

(14) .70

I am sure my partner will be there
for me when I need support.

(9) .60

Other people think I’m doing a
good job as a mother.

(14) .55

Being a mother is very stressful for
me (reverse scored).

(12) .55

I am confident that my baby is
doing well.

(10) .76

I am confident about feeding my
baby.

(1) .68

Percent of variance (Total � 49.3%) 30.1 11.1 8.1

Cronbach’s alphab .80 .64 .44

aFactor I � Parenting; Factor II � Support; Factor III � Child Development
bCronbach’s alpha for overall scale � .81

Adapted from Table 4, Črnčec, Barnett, and Matthey (2008).
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Summary Points

• Factor analysis is a statistical technique used to

elucidate the underlying structure and dimension-

ality of a set of variables. By analyzing correla-

tions among variables, factor analysis determines

which variables cluster together to reveal unidi-

mensional constructs.

• Mathematically, factor analysis creates factors
that are linear combinations of variables. Factor

analysis begins with factor extraction, which

involves the extraction of as much variance as pos-

sible through the successive creation of linear

combinations that are orthogonal to (uncorrelated

with) previously created combinations.

• A widely used factor extraction procedure is the

principal components method, an approach that

analyzes all variance in the variables.

• Other methods of factor extraction, which analyze

common factor variance (i.e., variance that is

shared with other variables), include the principal
factors method, the alpha method, and the

maximum likelihood method.
• Various criteria can be used to decide how many

factors account for a reliable amount of variance in

the data set. One criterion is to use only factors

with eigenvalues greater than 1.0. An eigenvalue
is a standardized index of the amount of variance

each factor extracts. Another approach is to use a

scree test to identify sharp discontinuities in the

eigenvalues for successive factors.

• Factor extraction results in a factor matrix that in-

dicates, through the factor loadings, the relation-

ship between original variables and the factors.

• Across factors, the sum of the squared loadings for a

given variable indicate the variable’s communality
(shared variance). Across variables, the sum of

squared loadings for a given factor is the factor’s

eigenvalue.

• The initial factor matrix is often difficult to inter-

pret, and so most factor analyses involve factor
rotation. Factor rotation moves the reference axes

within the factor space such that variables more

clearly align with a single factor.
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• Orthogonal rotation keeps the reference axes at

right angles and results in factors that are uncorre-

lated. Orthogonal rotation is usually performed

through a method called varimax, but other meth-

ods (quartimax and equimax) are also available.

The product of an orthogonal rotation is a rotated
factor matrix.

• Oblique rotation allows the reference axes to ro-

tate into acute or oblique angles, thereby resulting

in correlated factors. When oblique rotation is

used, there are two resulting matrices: a pattern
matrix that indicates partial regression coeffi-

cients between variables and factors, and a

structure matrix that indicates variable-factor

correlations.

• Factors are interpreted by examining the pattern

and magnitude of the factor loadings in the rotated

factor matrix (orthogonal rotation) or pattern ma-

trix (oblique rotation). With orthogonal rotation,

the factor loadings, when squared, indicate the

proportion of variance accounted for in the vari-

able by the factor.

• Ideally, there is one or more marker variable—a

variable with a very high loading on one and only

one factor. Loadings of .30 and higher are usually

sufficiently large to be meaningful in terms of in-

terpreting the construct that the factor represents.

• Once a factor is interpreted and labeled, researchers

can create factor scores, which are scores on the

abstract dimension defined by the factor. A com-

mon scoring method is to sum the item values for

all items attributed to the specified factor.

• The internal consistency reliability of multi-

item scales, such as those developed based on

factor analysis, is most often assessed through a

statistic called Cronbach’s alpha, which is a mea-

sure of how much true score is present in a com-

posite scale score. Errors of measurement can

occur for many reasons, but one persistent prob-

lem is the inadequate sampling of items to capture

the underlying dimension. Alphas of at least .80

are desirable.
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Exercises

The following exercises cover concepts presented in this chap-

ter. Answers to Part A exercises are indicated with a dagger

(†). Exercises in Part B involve computer analyses using the

datasets provided with this text, and answers and comments

are offered on the Web site.

PART A EXERCISES

A1. Using information from Figure 4 (PCA communalities)

and Figure 7 (factor loadings for three factors), compute

the absolute values of the loadings for items 7 and 8 on

Factor II.

A2. With regard to Figure 2, indicate the equation for

Component 1 that yielded the percent of variance (26.86).

A3. In Table 4, what are the eigenvalues for Factors I through

III?

A4. In a PCA of eight items, assume initial eigenvalues were:

2.83, 2.08, 1.09, .80, .42, .36, .22 , .20. Graph these values

on a scree plot. How many factors do you think should be

extracted and rotated?

A5. Suppose that a seventh test (Test G) was added to the fac-

tor analysis graphed in Figure 5. This test has the follow-

ing coordinates on the unrotated axes: Y (�.40), X (.45).

Plot this test on graph (B) of this figure. What would the

coordinates be on the new (rotated) reference axes? Is it

more likely that Test G is a measure of verbal aptitude

(Factor I) or of quantitative aptitude (Factor II)?

A6. Comment on the researchers’ decisions in the research

example at the end of this chapter (Črnčec et al.,

2008). What, if anything, would you recommend doing

differently?

PART B EXERCISES

B1. For these exercises, you will be using the SPSS dataset

Polit2SetC. This file contains responses to individual

items on the Center for Epidemiologic Studies—

Depression (CES-D) Scale. This scale presents respon-

dents with 20 statements about their mood and feelings.

They are asked to rate each item for its frequency in the

prior week on the following scale: 1 (rarely or never—less
than 1 day), 2 (some or a little—1–2 days), 3 (occasionally
or a moderate amount—3–4 days), or 4 (most or all—5–7
days). The CES-D has been used in thousands of studies,

and has undergone rigorous psychometric testing. Still, it

is worthwhile to assess its dimensionality and psychomet-

ric adequacy for a population of low income minority

women. Let us begin by running basic frequency informa-

tion. In the file, you will find that there are 24 CESD items

because four items (item 4, 8, 12, and 16) are worded pos-

itively (e.g., “I was happy,”), and so to consistently mea-

sure depression these items have to be reverse scored. We

have done this for you. Run basic descriptives for the

24 variables (starting at cesd1 and ending at cesd20) and

then answer the following questions: (a) Were there any

items that did not have a full range of responses, from 1 to 4?

Were there any outliers? (b) What was the range of 

missing data for individual items? (c) Comment on the

similarity or differences in means and SDs across items.

(d) Examine the frequency distribution information for

item 4 and item 4 reversed. Does it appear that the reversal

was done properly? (Note: If you will be doing the

exercises on Missing Values, keep the output from this

exercise for later reference.)

B2. Before performing a factor analysis, do a reliability analysis

for the entire 20-item scale. Click Analyze ➜ Scale ➜
Reliability Analysis. Move the 16 negatively worded CESD

items and the four reverse-coded items into field for items.

Click the Statistics pushbutton and in the next dialog box,

click Descriptives for all three options (Item, Scale, Scale if

Item Deleted); Inter-Item Correlations; and Summaries for

Means, Variances, and Correlations. Click Continue, then

OK, then answer these questions: (a) How many cases were

in this analysis? Why do you think the number is so low?

(b) For the 20-item CES-D scale, what is the value of

Cronbach’s alpha? Does this indicate adequate internal con-

sistency? (c) What was the range of correlation coefficients

between pairs of items on the CES-D? Does something about

this range seem puzzling? Between which pairs of items are

the correlations highest and lowest in value? (d) What was

the mean inter-item correlation? (e) In the panel for Item-

Total Statistics, which item had the strongest corrected item-

total correlation? Which had the weakest? (f) Which item had

the strongest (and weakest) squared multiple correlation? 

(g) Would the value of Cronbach’s alpha increase if any items

were deleted—and, if so, which items and by how much?

B3. In this exercise, you will undertake a principal components

analysis of the CES-D items, using all 20 original items

(no reversed items). Go to Analyze ➜ Data Reduction ➜
Factor Analysis. Select the 20 CES-D items, being careful

not to select reversed items, and move them into the box

for Variables. Click the Descriptives pushbutton and in the

next dialog box select Univariate descriptives and Initial

solution under Statistics; and KMO � Bartlett’s test and

Anti-image under Correlation Matrix. Click Continue and

then on the original dialog click the Extraction pushbutton.

In this dialog box, select Methods ➜ Principal

Components; Analyze ➜ Correlation Matrix; Display ➜
Unrotated factor matrix and Scree plot; and Extract ➜
Eigenvalues over 1. Then click Continue and select

Rotation from the original dialog box. Select Method ➜
Varimax and Display ➜ Rotated solution. Click Continue

and then click the Options pushbutton. Select Missing val-

ues ➜ Delete listwise and, for Coefficient Display Format,

select Sorted by Size and Suppress absolute values less

then .30. Click Continue, then OK to run the analysis, and

then answer the following questions: (a) What was the

†

†

†

†

†

†

†
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Answers to Exercises

A1. Item 7, absolute value � .167 (in actuality, loading was negative). This value was obtained by squaring the two loadings on item

7 shown in Figure 7, adding them together, subtracting the sum from the total communality of .528, then taking the square root. So,

.528 � (.4912 � .5092) � .0279; the square root of .0279 � .167. Item 8, absolute value � .166 (this loading was also negative, al-

though there would be no way to know this without seeing actual output).

A2. 2.955 � 11 � 26.86 (eigenvalue divided by number of components � % of variance)

A3. Factor I � 4.515 (.301 � 15 items); Factor II � 1.665 (.111 � 15 items); Factor III � 1.215 (.081 � 15 items)

A5. Y � .10; X � .60; test G is likely to be a quantitative aptitude test

REFERENCES

Barnett, V., & Lewis, T. (1994). Outliers in statistical data (3rd ed.). New York: John Wiley & Sons.

Cooper, H. (2010). Research synthesis and meta-analysis (4th ed.). Thousand Oaks, CA: Sage Publications.

Few, S. (2004). Show me the numbers. Oakland, CA: Analytics Press.

Field, A. (2005). Discovering statistics using SPSS (2nd ed.). Thousand Oaks, CA: Sage Publications.

Factor Analysis and Internal Consistency Reliability Analysis

value of the KMO measure of sampling adequacy for the

entire set of items? What does this suggest about the fac-

torability of the items? (b) Was Bartlett’s test significant?

(c) Look at the anti-image correlation matrix and inspect

the measures of sampling adequacy (MSA) of individual

items along the diagonal. What is the lowest value—and

does this support a factor analysis? (d) In terms of commu-

nalities, how many items had extraction communalities ex-

ceeding .50? Which item had the highest communality, and

which had the lowest? (e) How many factors were extract-

ed in this PCA? What percentage of variance do these fac-

tors account for? What are the eigenvalues for the extracted

factors? (f) Examine the scree plot. Does the plot suggest

the same number of factors as were originally extracted?

(g) Looking at the unrotated factor matrix (the Component

Matrix), are there items with high loadings on more than

one factor? (h) Interpret the rotated component matrix.

What does the pattern of loadings suggest about the ade-

quacy of the factor solution?

B4. Now you will undertake a factor analysis of the CES-D

items using principal axis factoring, two factors, and

oblique rotation. Proceed with the same set of variables as

in Exercise B3. You can remove some of the Descriptive

options (e.g., no further need for the KMO test or inspec-

tion of the anti-image matrix). Click the Extraction push-

button and in this dialog box, select Methods ➜ Principal

axis factoring; Analyze ➜ Correlation matrix; Display (no

options); and Extract ➜ Number of factors: 2. Then click

Continue and select Rotation in the original dialog box.

Select Method ➜ Direct Oblimin; Delta ➜ 0; Display ➜
Rotated solution. Click Continue and run the analysis by

clicking OK. Then answer the following questions: (a) In

the pattern matrix, did any item have a loading greater than

.30 on both factors? (b) How many items had loadings

greater than .40 on Factor I and Factor II? Were there any

items that did not load on either factor with a loading of at

least .40? (c) What would you name the factors? (d) What

is the correlation between the two factors? What does this

suggest about orthogonal versus oblique rotation?

B5. In this exercise, run a reliability analysis for each of the

two factors from the previous exercise. In the first relia-

bility analysis, use all 16 of the negatively worded items

that had loadings greater than .30 on Factor I in Exercise

B4. Then, do a second analysis for the four items that had

loadings greater than .30 on Factor II (you can use either

the original or reversed items, it will not make a differ-

ence because all items are scored in the same direction).

Use the SPSS instructions from Exercise B2 to guide you

in doing this analysis. Then answer the following ques-

tions: (a) For the 16 items on the first factor, what is the

value of Cronbach’s alpha? How does this compare to the

value from Exercise B1? (b) Could alpha be increased by

eliminating any of the 16 items? If yes, which one? (c)

For the four items on the second factor, what is the value

of Cronbach’s alpha? Should a subscale such as this one

be used to measure Positive Affect? (d) Could alpha be

increased by eliminating any of the four items? If yes,

which one? (e) What do these analyses suggest about re-

searchers’ use of the full CES-D scale with this popula-

tion?

B6. Write up a description of the results of Exercises B4 and

B5, creating a table appropriate for a research report.

Remember to include some basic information about fac-

torability from Exercise B3.

†
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GLOSSARY
Alpha factor method A method of factor analysis that analyzes common factor variance and strives to maximize Cronbach’s

alpha (internal consistency reliability) for the factors.

Bartlett’s test of sphericity A statistical test used in multivariate analyses (e.g., factor analysis) that tests the null hypothesis that

the correlation matrix is an identity matrix (one in which all correlations are zero).

Common factor variance A measure of the variance that two or more measures share in common; also referred to as communal-
ity.

Communality A measure of a variable’s shared variance in the context of a factor analysis; also referred to as common factor vari-
ance and sometimes symbolized as h2.

Confirmatory factor analysis (CFA) A factor analysis, based on maximum likelihood estimation, designed to confirm a hypoth-

esized measurement model.

Cronbach’s alpha A reliability coefficient that indicates how much the items on a scale are measuring the same underlying di-

mension, thus a measure of internal consistency; also referred to as coefficient alpha.

Direct oblimin rotation In factor analysis, the most widely used method of oblique rotation of factors following factor extraction.

Eigenvalue The value equal to the sum of the squared weights for a linear composite (e.g., a factor in factor analysis), indicating

how much variance in the solution is explained.

Factor analysis A statistical procedure for reducing a large set of variables into a smaller set of variables (factors) with common

characteristics or underlying dimensions.

Factor correlation matrix In factor analysis with oblique rotation, the factor factor matrix that shows the correlations among

the factors.

Factor extraction The first major phase of a factor analysis, which involves the extraction of as much variance as possible through

the successive creation of linear combinations of the variables in the analysis.

Factor matrix A matrix produced in factor analysis that has variables on one dimension and factors on the other.

Factor rotation The second major phase of factor analysis, during which the reference axes for the factors are rotated such that

variables more clearly align with a single factor.

Internal consistency reliability The type of reliability that concerns the degree to which the subparts of an instrument (e.g.,

items) are all measuring the same attribute or construct.

Kaiser-Meyer-Olkin (KMO) test A test used to assess the sampling adequacy of variables in a factor analysis, and is a means of

determining the factorability of a set of variables; the closer the value of the KMO statistic is to 1, the greater the factorability.

Marker variable In factor analysis, a variable that is highly correlated with only one factor and that helps to define the underly-

ing meaning of the factor.

Oblique rotation A rotation of factors in factor analysis such that the reference axes are allowed to move to acute or oblique an-

gles, and hence factors are allowed to be correlated.

Orthogonal rotation A rotation of factors in factor analysis such that the reference axes are kept at right angles, and hence the fac-

tors remain uncorrelated.

Pattern matrix In factor analysis, the matrix that presents partial regression coefficients between variables and factors; in oblique

rotation, the matrix used to interpret the meaning of the factors.

Principal components analysis (PCA) An analysis that is sometimes considered a type of factor analysis; PCA analyzes all vari-

ance in the observed variables, not just common factor variance.

�
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Principal factors (PF) method A method of factor analysis that analyzes only common factor variance, using estimates of the

communality on the diagonal of the correlation matrix; sometime called principal axis factoring.

Residual correlation matrix In factor analysis, the correlation matrix that shows partial correlations between variables with the

effects of factors removed.

Rotated factor matrix A factor matrix (variables factors) after the reference axes have been rotated in factor space.

Scree test One approach to deciding the appropriate number of factors in a factor analysis, which involves plotting eigenvalues

against factors on a graph; discontinuities in the scree plot suggest where factoring should stop.

Structure matrix The matrix that contains the correlations between variables on the one hand and linear composites (factor

scores, canonical variate scores, or discriminant scores) on the other hand.

Unrotated factor matrix A factor matrix (variables factors) produced through factor extraction, prior to having the reference

axes rotated in factor space.

Varimax rotation In factor analysis, the most commonly used method of orthogonal rotation of factors following factor extrac-

tion.

Coefficient alpha See Cronbach’s alpha.

Exploratory factor analysis A factor analysis undertaken to determine the underlying dimensionality of a set of variables, most

often using least-squares estimation.

Factor loading In factor analysis, the b weight associated with a variable on a given factor.

Factor score A person’s score on a latent variable (factor).

Factor In factor analysis, a linear combination of variables in a data matrix that captures an underlying dimension or latent vari-

able.

Item reversal In scoring scales, the process of reversing the direction of the scoring on certain items, often by subtracting the

value of the item from 1 plus the item’s maximum value.

True score A hypothetical score that would be obtained if it were possible to measure a construct with no measurement error.

�
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The problem of missing data is the bane of many nurse researchers’ efforts to produce rigorous evidence for

nursing practice. It is a rare study that has no missing data, and so it is a problem with which almost all nurse

researchers must contend. Data values can be missing for any number of reasons—for example, when study

participants skip over questions in a questionnaire, miss a data collection appointment, refuse to continue in

a study, are unable to continue because of disability or death, or move away from the study area. In some

cases, missing values arise because of equipment malfunction, data entry errors, or other research-related

problems.

This chapter provides some preliminary guidance about missing data strategies. We acknowledge that

some of the best and most sophisticated strategies are not fully described, but we offer suggested readings for

further guidance on this important topic.

BASIC CONCEPTS FOR HANDLING MISSING VALUES

There have probably been more conceptual and statistical advances regarding the treatment of missing data in

the past 20 years than regarding any other analytic topic of relevance to healthcare research. Many of the

advances have stemmed from the seminal work of Roderick Little and Donald Rubin, who published a second

edition of their groundbreaking book on missing values in 2002. In this section we discuss why this topic is so

important, and what factors need to be considered in addressing it.

Missing Data Problems

The recent heightened awareness of and attention to the topic of missing data is partly a reflection of the emerg-

ing focus on evidence-based practice: The quality of the evidence can be seriously compromised when there are

values missing for some study participants. One way to think about the problems that are created when there are
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missing values is to consider the validity framework proposed by Campbell and

Cook (Shadish, Cook, & Campbell, 2002). This framework of four key aspects of

validity has been used for decades as a guide for evaluating the quality of research

evidence, particularly evidence that has implications for causal inferences (Polit &

Beck, 2008).

When there are missing values, it means that analyses are based on fewer study

participants than were in the full study sample. This, in turn, means less statistical

power, which can undermine statistical conclusion validity—the degree to which the

statistical results are accurate. Missing data can also affect internal validity—the degree

to which inferences about the causal effect of the independent variable on the de-

pendent variable are warranted. For example, if the most severely ill participants

drop out of an experimental group at a higher rate than control group members be-

cause the intervention is too demanding, then the missing values would result in at-

trition bias. Such bias could make the treatment look more (or less) effective than it

actually is. A high rate of dropouts in a study could also undermine external
validity—the degree to which results are generalizable to the full population from

which the full sample was recruited. Finally, missing values can have implications

for construct validity. For example, when there are missing values on individual

items in an instrument development study using factor analysis, the construct may be

inadequately defined.

Another way to consider the implications of missing data is to understand the

effects from a statistical point of view. Reduced power (from a smaller sample size)

means larger standard errors and a heightened risk of a Type II error. Biases that

threaten internal validity can affect statistical estimates as well. These biases can re-

sult in Type I errors, over- or underestimation of effect size indexes, erroneous con-

fidence intervals, underestimations of variance, and faulty regression coefficients, to

name only a few statistical problems.

Some missing values strategies are better than others at addressing these statis-

tical problems. The selection of an appropriate strategy depends on numerous factors.

Factors to Consider in Designing a Missing Values Strategy

The first defense for missing values is to make every effort to avoid the problem in

designing the study and collecting the data. Strategies might include persistent

follow-up, flexibility in scheduling appointments, paying incentives, using well-

proven methods to track people who have moved, performing a thorough review of

completed data forms prior to excusing participants, and so on. These strategies typ-

ically involve the expenditure of resources, but the payoff is well worth the effort.

Yet, a certain amount of missing data is probably inevitable in most studies.

There are many different ways to address the problem of missing data and, unfortu-

nately, there is not a “one size fits all” approach. Nor, for that matter, is there an easy

formula for deciding which approach to use. We can, however, identify major factors

that could affect the decision and its likelihood of success.

• Extent of missing data: Researchers usually handle the problem differently if

there is only 1% missing data as opposed to, say, 25% missing.

• Pattern of missing data: It is more straightforward to deal with data that are

missing in a haphazard, random fashion, as opposed to a systematic fashion that

typically reflects a bias. We discuss three distinct patterns in the next section.

• Nature of missing data: Sometimes values are missing for only one item in

a multi-item measure, and sometimes an entire variable is missing. In other

situations, all data are missing for certain study participants, such as follow-

up data in an intervention study or an entire wave of data in a longitudinal survey.
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• Role of the variable: How one handles the missing data problem may depend

on whether a variable is considered a primary outcome, a secondary outcome,

an independent (predictor) variable, or a control variable (covariate).

• Level of measurement of the variable: Some strategies are best applied when

the variable is measured on an interval or ratio scale, while others only make

sense for nominal-level variables.

Another issue that is relevant to the readers is analysts’ level of statistical

sophistication and their access to specialized software. Some of the most highly

esteemed methods are, unfortunately, technically complex and require software that

is not available in all institutions. Yet every researcher, regardless of statistical skills,

should be aware of methods to address missing data problems, and the possible

consequences of not using the best ones.

Patterns of Missing Data

Much attention has been paid to the issue of the pattern of missing data. This is be-

cause the pattern of missing data is considered more important in addressing the

problem than how much is missing, unless the amount missing is trivial (e.g., 1%).

To illustrate different patterns, let us use as a hypothetical example an experi-

mental study of a smoking cessation intervention in which 25 men and 25 women

are randomly assigned to an experimental group and similar numbers are assigned to

a no-treatment control group. With no missing data, the grand mean for postinterven-

tion cotinine is 185.0 ng/mL. This is shown in the top row of Table 1.

From the point of view of “fixing” a missing data problem, the most desirable

pattern is when data are missing completely at random (MCAR). When a variable

has missing data that are MCAR, it means that the probability that the observation is

missing is completely unrelated to either the value of the missing case, or the value

of any other variables. If some participants in our hypothetical smoking cessation

study had missing data for postintervention urinary cotinine because they had a car

accident on the way to the clinic, or had a family emergency, or had moved from the

area, the data would be MCAR. In this situation, the missing values are not related to

urinary cotinine values, or to the value of other characteristics, such as the person’s

age, sex, or experimental group status. A car accident, family emergency, or residen-

tial move could have happened to anyone in the sample. The subsample with missing

values is a totally random subset of the original sample. When data are MCAR, the

analysis remains unbiased—although the absence of such data still results in reduced

power. As shown in Table 1, the difference in mean value for urinary cotinine is only

modestly (and nonsignificantly) different between the full 100 subjects (M � 185.0)

and the 90 for whom full data were available (M � 185.5)—although, of course, this

would not be known in a real study.

Data are, unfortunately, rarely missing completely at random, but they may

be classifiable as missing at random (MAR). Data can be considered MAR if

missingness does not depend on the value of the variable with the missing data

(urinary cotinine in our example) after controlling for another variable. That is,

in MAR, missingness is unrelated to the value of the variable itself, but it is related

to other variables that can be identified. For example, suppose men were more

likely to have missing data than women (e.g., men were less likely to keep their

follow-up appointment). Thus, missingness is related to a person’s gender. But

suppose that, among males, the likelihood of providing follow-up data is equally

likely for men with high and low cotinine levels. Within the subgroup of male

participants, missingness is random. This would mean that the pattern is MAR,

though not MCAR.
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TABLE 1 Patterns of Missing Data

Study: 100 smokers randomly assigned to smoking cessation intervention:
25 men and 25 women in experimental group and 25 men and 25 women
in no-treatment control group

Patterna
Number at
Follow-up

Reason for 
Missing Data

Mean Cotinine Level
(ng/mL)

All 100
Subjects

90
Subjects

No missing 50 men,
50 women

Not applicable 185.0 —

MCAR 45 men, 
45 women

Miscellaneous, at
random—lab error, car
accident, bad weather,
residential move, family
death, etc.

185.0 185.5

MAR 40 men, 
50 women

Male dropouts lost interest
in study. Among males
(who, as a group, smoked
more than women),
dropping out was
unrelated to cotinine
values.

185.0 175.0

MNAR 40 men, 
50 women

Male dropouts had
resumed heavy smoking,
were too embarrassed to
continue in study, so
dropping out was related
to cotinine values.

185.0 165.0

aMCAR � Missing completely at random; MAR � Missing at random; MNAR � Missing not at

random

We think that MAR was an unfortunate choice of terms, but it has become

widely used and is unlikely to ever be changed. The phrase can easily cause confu-

sion because the word random typically suggests the absence of bias. In this context,

however, random does not mean that there is no risk of bias because even though

men with higher versus lower cotinine levels were equally likely to drop out, men
overall had higher cotinine levels than women. Thus, with 10 men no longer in the

study, the grand mean for cotinine level based on 90 participants is lower (175.0)

than it would have been if no data were missing (185.0). Thus, having data that are

MAR does not mean that you can ignore the problem.

TIP: Equally unfortunate, MAR is sometimes referred to as a pattern of
ignorable missing values, even though it would be most unwise to ignore
missing data of any type.

The third classification is missing not at random (MNAR), sometimes called

a nonignorable pattern. In this case, missingness is related to the value of variable

with missing data—and, usually, to other variables as well. In our example, suppose
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that the 10 men who dropped out of the study refused to provide the data specifically

because they knew their cotinine values would be high—that is, the dropouts were

ones who had resumed heavy smoking. When data are MNAR, there is clearly a

problem, and it is a problem that is difficult to solve. In our example, the overall

grand mean for the sample is 165.0 ng/mL, which is a seriously biased estimate of

postintervention smoking.

In an actual study, it is difficult to ascertain which of these three missing val-

ues patterns apply, although we will offer a few suggestions for gathering suggestive

evidence. Suffice it to say that missing data are least likely to be MCAR and most

likely to be MAR or MNAR—the classifications that are most difficult to resolve.

TIP: It is often helpful, in formulating a strategy, to have information
about the underlying reasons for missingness. It matters, for example,
whether data are missing because of a technical error (e.g., equipment
malfunction) or refusals. To the extent possible, reasons for missing values
should be documented.

OVERVIEW OF MISSING VALUES STRATEGIES

There are over two dozen approaches to dealing with the problem of missing values,

some of which are covered. Most approaches can be classified in one of two broad

categories—deletion methods and imputation methods. (Some of the sophisticated

multilevel modeling techniques that allow substantive analyses of certain types to

proceed with missing values are not covered [e.g., Acock, 2005; Singer & Willett,

2003].)

Numerous simulation studies have been conducted in recent years to test how

good a job the various methods do at “getting it right.” That is, researchers have

begun with a dataset without missing values, and then have systematically “created”

missing values that conform to the three patterns just described, for differing

amounts of missingness. Then, statistics (e.g., means, SDs) are computed for the full

sample and the various simulated samples. In general, imputation methods (especially

the more sophisticated ones) have been found to be superior to deletion methods in

minimizing errors while maintaining statistical power.

Deletion Methods

Deletion methods involve removal of cases or variables with missing data. Even

though deletion methods are often not the most suitable methods, they are commonly

used by researchers in most fields. Three methods in the deletion category are

described here.

LISTWISE DELETION Listwise deletion (also called complete case analysis) is

simply the analysis of those cases for which there are no missing data. The use of

listwise deletion is based on an implicit assumption of MCAR. Researchers who use

this method typically have not made a formal assessment of the extent to which

MCAR is probable, but rather are simply ignoring the problem of missing data.

In our example of the smoking cessation intervention, if the researcher used

listwise deletion for the situations in the last three rows of Table 1, mean cotinine

levels would be computed for 90 study participants. As we can see, the computed

mean is only a reasonably good approximation in the MCAR scenario. In the MAR

and MNAR situations, if male dropouts were disproportionately in the experimental

395



Missing Values

group, not only would the grand mean be wrong, but the experimental control group

comparison would be biased. In other words, by ignoring missing values, the

researcher might come to erroneous conclusions about the effectiveness of the inter-

vention. Even when MCAR applies, listwise deletion can result in errors in statistical

decisions because of reduced power.

TIP: The “gold standard” for analyzing data from randomized controlled
trials is to use an intention-to-treat analysis, which involves analyzing
outcome data from all subjects who were randomized, regardless of
whether they dropped out of the study (“once randomized, always
analyzed”). Intention-to-treat (ITT) analyses are often claimed in nursing
and medical RCTs, but true ITT analyses are seldom actually achieved
(Polit & Gillespie, in press; Gravel, Opatrny, & Shapiro, 2007; Wood, White, &
Thompson, 2004). Complete case analysis has been found to be the most
frequently used approach to dealing with missing values in clinical trials.

In many statistical programs, including SPSS, listwise deletion is the default

for many types of analysis. In such a situation, the program performs the requested

analysis only for those cases with nonmissing values for every variable in the analy-

sis. Thus, one reason for the popularity of this approach is that it is simple. Although

seldom the preferred method for dealing with missing values, listwise deletion might

be acceptable when MCAR is a realistic assumption and when the percent of missing

values is low (�5%) in a large sample of participants.

PAIRWISE DELETION Pairwise deletion (also called available case analysis)

involves omitting cases from the analysis on a variable-by-variable basis. In this

approach, a case is deleted from the calculation of a statistic only when the specific

variables in the analysis have any missing values. For example, in a correlation

matrix with pairwise deletion, correlations are computed for cases with nonmissing

values for each variable pair. This results in a correlation matrix with values of r that

are not necessarily based on the same subset of the sample. When such correlation

matrixes are the basis for further analysis, such as multiple regression or factor

analysis, serious errors and interpretive problems can ensue.

Although few researchers pursue a pairwise (some call it unwise) deletion

strategy within a correlation matrix scenario, pairwise deletion is extremely common

among researchers who compare groups on multiple outcomes. When the difference

in the number of cases for different outcomes is small (e.g., 158 versus 165), it may

be prudent to use listwise deletion so that the sample is consistent across outcomes—

or, at a minimum, to assess whether listwise deletion changes the results, and to note

that information in the report. The difference between 158 for some outcomes and

487 for another, however, should not have been ignored—the researchers should

have helped readers to understand why so much data were missing and what pattern

of missingness likely applied. Pairwise deletion may not lead to errors if the missing

data are MCAR and the percentage missing is small, but in this example it is unlikely

that the two thirds of the sample who did not complete the self-report measures was

a random subset of the entire original sample.
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Example of pairwise deletion with likely MCAR pattern:

Liao and colleagues (2008) studied the effect of a warm footbath on body tempera-

tures, skin temperatures, and sleep outcomes among 15 Taiwanese elders with sleep

disturbance, using a crossover design. Three cases had missing temperature values

during sleep due to problems with temperature recording, and so the analysis of core

body temperatures was done with only 12 participants. For other outcomes, data

from all 15 participants were used.

TIP: Within SPSS, listwise deletion is the default for some types of
analyses, and pairwise is the default for others. In most cases, use the
Options pushbutton to select the approach you want.

VARIABLE DELETION Variable deletion involves totally eliminating a variable

from consideration in the analyses. Clearly, this is not an attractive option for certain

types of variables—for example, you would never use this option for primary out-

come variables. Yet, in some cases throwing out a variable makes better sense than

throwing out a lot of cases. If a variable is a relatively minor (secondary) outcome

variable, for example, it may not be necessary to include it in final analyses. Or, if a

variable is a covariate in a regression or ANCOVA analysis, it might be reasonable to

drop the variable or substitute an alternative covariate. As an example, it has repeat-

edly been found that many people do not provide self-report information about fam-

ily income—and this is especially true of those in higher and lower income brackets,

which means that the missing values are MNAR. If income was envisioned as a

covariate and the amount of missing data is high, perhaps another socioeconomic

variable could be used as a proxy, such as educational attainment.

Variable deletion makes most sense when the amount of missing values is

high. There have been several recommendations for what is considered high in this

context, ranging from 15% missing to 40% missing (Fox-Wasylyshyn & El-Masri,

2005). Decisions about what to consider “high” are likely to depend on how substan-

tively important the variable is to the study.

Example of variable deletion:

Lee, Fogg, and Menon (2008) gathered information about Korean-American

women’s knowledge and beliefs relating to cervical cancer and screening via tele-

phone interviews with 189 women. Demographic variables and knowledge questions

were used in a logistic regression to predict having had a Pap smear. Several predic-

tors were dropped from the analysis (e.g., income and many knowledge questions)

because of high percentages of missing values.

Imputation Methods

The most respected methods for addressing missing values are in a broad class in-

volving imputation methods—that is, the “filling in” of missing values with values

that are thought to be good estimates of what the values would have been, had they

not been missing. An attractive feature of imputation is that it allows researchers to

maintain full sample size, and thus statistical power is not compromised. The danger

is that the imputations will be poor approximations to the real values, leading to bi-

ases of unknown magnitude and direction.
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There are numerous imputation strategies, some of which are described here,

but a basic issue is where to obtain the imputed value. Some strategies use informa-

tion from other people in the sample to estimate the missing values, and others use

information from the case with the missing values (i.e., from other variables) in the

estimation. It has typically been found that using information from the case itself,

rather than from the sample, yields better estimates.

A persistent problem with imputation, regardless of the source of the informa-

tion, is that variability tends to be lower than it would have been had there been com-

plete data. By substituting a missing value with an estimate from either the case or

the sample, the overall set of values tends to be more consistent, regular, and homo-

geneous. Virtually all statistical analyses involve disentangling intersubject variabil-

ity, and so reduced variability is inherently problematic.

MEAN AND SUBGROUP MEAN SUBSTITUTION The oldest and possibly most

widely used imputation method involves mean substitution—replacing a missing

value with the mean of that variable, calculated from all sample members with non-

missing data. In our earlier smoking cessation example (Table 1), the 10 people with

missing values would not be removed from the analysis using mean substitution.

Rather, they would all be given a cotinine value of 185.0, regardless of the pattern of

missingness. Sometimes, if the distribution of values is skewed or if the measure-

ment scale is ordinal, the median rather than the mean is used as the replacement

value, and modal values are sometimes used to replace nominal-level data. These

substitution decisions represents the researcher’s best guess—absent any further

information—about what the missing value is.

Mean substitution is, like listwise deletion, a popular method because of its

simplicity—and also because some programs offer this approach as an option. For

example, the SPSS factor analysis program allows missing values on individual

items to be replaced by the item’s mean value. Yet, even though mean substitution

increases sample size and leaves variable means unchanged, it is rarely the best ap-

proach. Regardless of what the underlying pattern of missingness is, mean imputa-

tion underestimates variance—and variance is progressively underestimated as the

percentage of missing values increases. This in turn can lead to a range of problems.

For example, reduced variance can enhance the apparent precision of estimates be-

cause it artificially lowers standard errors; consequently, the probability of a Type I

error can increase. But reduced variance can also decrease the magnitude of correla-

tions and thus increase Type II errors. It is probably best to avoid mean imputation

unless the percentage of missing values is very small and other options cannot rea-

sonably be pursued.

A variant on mean substitution is to use the mean value for a relevant

subgroup—sometimes called a subgroup (or conditional) mean substitution. In

this situation, it is assumed that a better estimate of the missing value can be

obtained by making the substitution conditional on one or more of the participants’

characteristics. For example, in the second row of Table 1, five men and five women

had missing values. Rather than replacing all missing values with 185.0, we could

replace the five women’s missing values with the mean cotinine level for women,

and the five men’s missing values with the mean cotinine level for men. This is a bet-

ter option than mean substitution because the substituted values are presumably clos-

er to the real values, and also because variance is not reduced as much. Nevertheless,

conditional (subgroup) mean substitution is not a preferred approach, except when

overall missingness is low.
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Example of subgroup mean substitution:

de Montigny and Lacharité (2008) studied the role of nurse–parent relationships in

the development of parenting self-efficacy. They tested a complex model using self-

report data from a sample of about 200 Canadian parents. Missing values, which

constituted less than 5% of the data, were replaced using variable means separately

for mothers and fathers.

CASE MEAN SUBSTITUTION In certain circumstances, it might be appropriate to re-

place a missing value with the mean of other relevant variables from the person with

the missing value. This approach has an implicit assumption that people are “internally

consistent” across similar questions. The most obvious situation in which this might be

appropriate is when there are missing values in a set of items that form a unidimen-

sional scale. If a person skipped one item on a 10-item scale, for example, the person’s

mean on the nine nonmissing items would be substituted for the missing value on the

10th item. This method of imputation, which uses person-specific information to in-

form the estimate, has the advantage of not throwing out data altogether (listwise dele-

tion), and not assuming that a person is similar to all others in a sample or subgroup

(mean substitution). Case mean substitution has been found to be an acceptable

method of imputation at the item level, even compared to more sophisticated methods.

A recent simulation study suggested that case mean substitution works reasonably well

when up to 30% of item values on a scale are missing (Shrive, Stuart, Quan, & Ghali,

2006).

Example of case mean substitution:

Aroian, Hough, Templin, and Kaskiri (2008) developed and tested an Arab version

of an instrument called the Family Peer Relationship Questionnaire, specifically for

use with Arab immigrants. Prior to the analyses, which involved a confirmatory fac-

tor analysis, missing values at the item level were imputed using the respondent’s av-

erage score from the scale associated with the missing value. The researchers noted

that the amount of missing data was less than 1% for any scale.

REGRESSION IMPUTATION Another method of addressing missing data is to use

regression imputation. This approach involves using the variable with the missing

values as the dependent variable in a regression with a set of predictors (other vari-

ables in the dataset) for those participants for whom there are no missing values. In

essence, this process is an extension of subgroup mean substitution, using multiple

variables to estimate the value that is missing rather than just one. In our example of

the smoking cessation intervention, we could estimate the missing cotinine values

for the 10 study participants by doing a multiple regression analysis with the 90 par-

ticipants with full information, using (for example) such variables as sex, experimen-

tal group status, baseline smoking history, and baseline cotinine levels as predictors.

The regression equation would then be used to “predict” the missing cotinine value

for the 10 dropouts.

Researchers sometimes repeat the regression analysis multiple times to im-

prove the estimates. In a second round, all cases, including ones with the imputed

missing values, are included in the regression to develop a more precise regression
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equation. The process continues until predicted missing values become very similar

from one iteration to the next (Tabachnick & Fidell, 2007).

To be successful, regression imputation relies on having a reasonably good set of

predictors of the variable with missing data. Evidence suggests that regression imputa-

tion is most useful when up to 15% of missing values are MAR, or when 10% or less

of missing values are MNAR (Fox-Wasylyshyn & El-Masri, 2005). Multiply iterated

regression imputation is most appropriate when missing values exceed 15% to 20%.

The regression approach typically yields better estimates than mean substitu-

tion, and results in less reduction to variance. Nevertheless, regression imputation

does not really add new information and does not always eliminate bias. People with

the same values on the predictors will have exactly the same imputed value, which

usually means lower variance on imputed values than would have been the case with

the actual values. This, in turn, leads to inappropriately small standard errors and

heightened risk of a Type I error.

One way to address this problem is to incorporate some error into the regres-

sion estimate, an approach sometimes called regression with error (Engles &

Diehr, 2003) or stochastic regression imputation (Haukoos & Newgard, 2007).

This approach incorporates uncertainty into the imputed value by adding some ran-

dom error, which provides some additional variance into the imputed estimates. The

SPSS program called Missing Values Analysis (MVA) offers this type of regression

imputation. However, MVA is an add-on module within SPSS and is not routinely

available in all SPSS systems.

Example of regression imputation:

Horgas, Yoon, Nichols, and Marsiske (2008) studied the relationship between pain

and functional ability in older White and African-American adults. In their model,

they planned to control for socioeconomic factors, but found that information on in-

come was missing for 16.5% of their sample. They used regression to impute values

of income.

LAST OBSERVATION CARRIED FORWARD Several approaches, most often used in

clinical trials with multiple points of data collection, involve imputing missing val-

ues for outcome variables from a person’s obtained values on the same outcomes at

a different point in time. In an approach called last observation carried forward
(LOCF), a missing outcome value at, for example, time 3 would be replaced with

the value of the outcome for that person at time 2. In a simple before–after design,

missing values postintervention are sometimes imputed with baseline values, which

is sometimes called baseline observation carried forward or BOCF.

The LOCF approach can be used with outcomes measured on any scale. For

example, if the outcome variable was an obesity category (normal weight, over-

weight, obese, or morbidly obese), a missing value would be imputed using the cat-

egory observed at the prior measurement. If the outcome were body mass index

(BMI), the previous BMI would be used.

LOCF has an implicit assumption that the outcome did not change over time—

an often undesirable position. Until recently, LOCF was the approach recommended

by the U.S. Food and Drug Administration because it presumably offers a conserva-

tive estimate of the efficacy of a treatment. LOCF was found recently to be the most

often-used method of imputing missing outcomes among RCTs reported in 10 top

medical journals (Gravel et al., 2007), but it appears to be used infrequently in nurs-

ing clinical trials.
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Several variations of LOCF can be used in clinical trials or in other studies in-

volving longitudinal data collection. For example, if there are actual values for an

outcome at T1, T2, and T3, then a missing value at T4 could be replaced with the

mean (or median) of the person’s T1 to T3 values. Or, if there are real values at T1

and T3, but a missing value at T2, the imputation might involve using an interpolated

value, which assumes a consistent linear trajectory. These approaches clearly require

variables measured on at least the ordinal scale.

TIP: Another strategy that is sometimes used in clinical trials when there
is a dichotomous outcome is called worst case imputation. This extremely
conservative approach replaces missing values with the “worst case
scenario.” For example, if a primary outcome in a smoking cessation
intervention were resumption versus nonresumption of smoking, anyone
whose outcome data were missing would be assumed to have resumed
smoking. In best case imputation, the opposite would be done—those with
missing values would be assumed to have the best case scenario, such as
nonresumption of smoking (Haukoos & Newgard, 2007).

Although LOCF and related approaches have had considerable popularity until

recently, more sophisticated and accurate methods are now preferred.

Example of last observation carried forward:

Budin and colleagues (2008) undertook a randomized controlled trial that tested

alternative interventions to promote emotional and physical adjustment among

patients with breast cancer. Outcomes were measured at baseline (entry into the

study); at diagnosis, i.e., when the diagnosis of breast cancer was confirmed; and at

three subsequent points postsurgery. The report indicated that “if there were missing

data in the diagnostic period, the value from baseline was carried forward to the di-

agnostic period”. LOCF was not, however, used to impute missing values in subse-

quent periods.

EXPECTATION-MAXIMIZATION IMPUTATION Some of the best modern-day

approaches to addressing missing values use maximum likelihood (ML) imputation.

There are several different ways to obtain ML estimators, and the most common

algorithm is called expectation-maximization (EM) imputation. EM imputation is

an iterative two-step process that generates estimated values using expectation 

(E-step) and maximization (M-step) algorithms. In the E-step, expected values are cal-

culated based on all complete data points. In the M-step, the procedure substitutes the

expected values for the missing data obtained from the E-step, and then maximizes

the likelihood function as if no data were missing to obtain new parameter estimates.

These new estimates are substituted back into the E-step, and then a new M-step is

performed. The two-step process continues in an iterative fashion until changes in ex-

pected values from one iteration to the next are trivial.

EM imputation is one of the missing values options available in the SPSS

Missing Values Analysis module. A product of this analysis is a new dataset in

which missing values are imputed with maximum likelihood values.

EM imputation is considered preferable to all previously discussed methods of

imputation. It produces unbiased estimates for MCAR and estimates with modest
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bias for MAR (although small samples can lead to biased ML estimates). The prob-

lem of reduced standard errors does, however, persist using EM imputation.

Example of EM imputation:

Musil, Warner, Yobas, and Jones (2002) used EM imputation in a simulation, using

data from their longitudinal study on stress and health in older adults. They created a

dataset with missing data (MAR) on items from the Center for Epidemiological

Studies Depression scale (CES-D). They found that the EM algorithm produced

estimates of missing values that were close to the original values.

MULTIPLE IMPUTATION Imputation using EM is an important advance over more

traditional approaches, but it is flawed primarily because, like other imputation methods

we have reviewed, it involves single imputation. A single value is imputed and substitut-

ed for the missing value. All methods of single imputation tend to underestimate stan-

dard errors and thus overestimate the level of precision. Single imputation treats the

imputed values as if they were true, and does not address a fundamental issue—the

uncertainty of the estimate.

To obtain more accurate estimates of the standard errors and p values, and to deal

with the issue of uncertainty, an approach called multiple imputation (MI) has been

developed and is quickly becoming the “gold standard” approach to handling missing

data that are MAR. Despite a growing consensus about the advantages of MI, its use is

not yet widespread, in part because of its complexity but also because software for using

this approach has been limited. MI became available within the SPSS Missing Value

Analysis module, in SPSS version 17.0.

Computationally, MI is enormously complex, but it is conceptually fairly

straightforward. MI is essentially a three-step process (Figure 1). First, each missing

value is replaced with plausible estimates using MLE, and a new dataset with imput-

ed values is created. The imputations are redone m times, and a new dataset is creat-

ed each time. Because an element of randomness is introduced in developing the

imputations, the m estimates for the missing values are all different. In the second

step, the desired substantive analysis (e.g., ANCOVA, logistic regression) is under-

taken m times, once for each new dataset with imputed values. In the third and final

Observed Data
(With some

values missing)

?

?
?

?

?
?

Datasets with
Imputations

(m = 3)

Analysis
Results
(m = 3)

Pooled
Results

Step 1 Step 2 Step 3

FIGURE 1 Schematic representation of multiple imputation, with m � 3.
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step, the results from the m analyses are pooled and average parameter estimates are

obtained. The pooling takes into account the variation among the m analyses (between-

imputation variation), and variation within each analysis (within-imputation variation).

The MI process, including a discussion of MI models and estimation algorithms, has

been nicely described for nonstatisticians by Patrician (2002).

The MI procedure uses available data to predict a participant’s missing values,

given his or her observed values on other variables. In datasets with many variables,

the selection of variables to use in predicting the missing values clearly is critical to

the success of the imputation. It has been shown that, when imputing values for a

predictor variable or covariate, it is preferable to include the outcome variable in the

prediction model, even though this may seem like “a self-fulfilling prophecy”

(Moons, Donders, Stijnen, & Harrell, 2006).

The number of imputations needed to achieve a satisfactory solution depends

on various factors—most importantly the amount of missing data. Three to five

replications are usually sufficient when missingness does not exceed 20% (Little &

Rubin, 2002). Iterations should continue as long as the imputations continue to pro-

duce significantly different estimates.

TIP: ML estimates in EM and multiple imputation assume MAR, yet this
is an assumption that is unlikely to be precisely satisfied in most cases. It
has been argued, however, that in many realistic applications, departures
from MAR are probably not large enough to invalidate the results of a
MAR-based analysis (Schafer & Graham, 2002).

The advantages of MI are noteworthy. The procedure has been found repeatedly

in simulation studies to yield the best estimations of missing values, especially in

comparison to crude imputation methods like mean substitution. Appropriate statis-

tical inferences can be drawn from an analysis of MI datasets, and there is no loss in

statistical power. Both internal and external validity are safeguarded against biases

stemming from nonresponse. MI is also a versatile imputation procedure. It has been

found useful for imputing predictors, covariates, and outcomes; it is appropriate for

items in multi-item scales as well as complete variables. Continuous and dichoto-

mous nominal-level variables can be imputed by MI. (Dichotomous variables imputed

under a normal model must be rounded to the nearest category.)

The major disadvantage of MI has been that its use has been constrained by the

limited availability of suitable software, but that situation is changing. Another issue

is that MI solutions are not unique. Two researchers using MI with the same dataset

might get somewhat different results. However, MI results can be saved by any given

researcher and the imputations can be used in many different analyses.

TIP: Even for those without access to the new SPSS MVA module, MI is
available through a program called NORM, which can be obtained free of
charge over the Internet (http://www.stat.psu.edu/~jls/misoftwa.html).

Multiple imputation has been described extensively in several nursing papers

(e.g., Kneipp & McIntosh, 2001; Patrician, 2002; McCleary, 2002), and its use in

nursing studies is just beginning to emerge.
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A Full Sample (N � 3960)

Statistics

1. Best part of
my day spending

time w/child

2. Child seems
harder to care
for than most

N Valid 1859 1858

Missing 52 53

Mean 8.8230 2.6690

Std. Deviation 1.93110 3.45674

Minimum .00 .00

Maximum 10.00 10.00

B Relevant Subsample (N � 1911)

Statistics

1. Best part of
my day spending

time w/child

2. Child seems
harder to care
for than most

N Valid 1859 1858

Missing 2101 2102

Mean 8.8230 2.6690

Std. Deviation 1.93110 3.45674

Minimum .00 .00

Maximum 10.00 10.00

FIGURE 2 SPSS frequency information for full sample (A) and relevant subsample (B).

Example of multiple imputation:

Koniak-Griffin and a team of researchers (2008) evaluated a theory-based HIV preven-

tion program for Latino adolescent mothers and their partners. Data were collected at

baseline and at 3-month and 6-month follow-ups for couples in the treatment group or

a comparison group. Couples with no follow-up data were dropped from the sample,

but other missing data were imputed using MI.

MISSING VALUES PROCESSES

In this section we offer some concrete suggestions for how to proceed with efforts to

“fix” missing data problems, using examples from an actual dataset. Most of this

discussion does not involve the SPSS Missing Values Analysis module, even though

this module includes important tools, because this module is not universally avail-

able (for example, it is not included in the student version of SPSS). However, we do

discuss a few features of SPSS MVA, using version 16.0.

Strategies for Understanding Missing Values

Earlier in this chapter, we indicated that developing a missing values strategy depended

on various factors. Some of the information would be immediately known, such as

whether the variable was an item in a scale or a full variable, what the measurement

level of the variable was, and whether the variable was envisioned as a predictor or a

primary or secondary outcome variable. What is usually not known without further

investigation is how much data are missing, and the pattern of missingness.

AMOUNT OF MISSING DATA It is easy to examine how much data are missing

from a dataset on a variable-by-variable basis by simply running frequency

distributions—although it is important to keep in mind participants for whom the fre-

quency distribution is relevant. Figure 2 (A) shows the SPSS output for the first two

items (obtained through Analyze ➜ Descriptive Statistics ➜ Frequencies) for all

mothers in the sample (N � 3,960). We might be alarmed to see that valid data were

obtained for only 1,859 women for the first item—a rate of missingness of 53%.

This number grossly exaggerates our problem, however, because the questions were

administered only to women with a child between the ages of 2 and 6. Panel B of

Figure 2 shows the amount missing for the subsample of 1,911 women with an 
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Frequency Percent
Valid 

Percent
Cumulative

Percent

Valid 0 1803 94.3 94.3 94.3

1 31 1.6 1.6 96.0

2 9 .5 .5 96.4

3 4 .2 .2 96.7

4 1 .1 .1 96.7

5 2 .1 .1 96.8

6 1 .1 .1 96.9

7 1 .1 .1 96.9

8 11 .6 .6 97.5

10 3 .2 .2 97.6

11 45 2.4 2.4 100.0

Total 1911 100.0 100.0

Number of missing values, Parenting items

FIGURE 3 SPSS printout, frequencies for newly created “missing items” variable.

age-appropriate child. For the first item, data were missing for 52 women, a rate of

missingness of 2.7%.

By inspecting variable-by-variable missing values, we can see whether it

might be sensible to delete an entire variable. For the 11 items, the number of miss-

ing values among the 1,911 women ranged from 52 (item 1) to 71 (item 9), which

translates to 2.7% to 3.7% missing. This does not suggest the need to drop a variable.

You can look at frequency distributions to learn the range of missing values for all

variables of interest. If you have access to the MVA module in SPSS, this informa-

tion is produced in a single descriptive table.

Another issue is missingness within a case. Would we want, for example, to

factor analyze the data for a person who was missing 10 out of the 11 items? We can-

not make decisions about whether to drop a case or impute missing values without

knowing how much data are missing for individual participants.

If you do not have access to the Missing Values Analysis module of SPSS, you

can learn about extent of missingness for individual participants by creating a new

variable (sometimes called a flag) that represents a count of how many of the variables

of interest are missing for each person. In our example, among women who answered

all 11 questions, the value on this new variable would be 0; women who answered 9 of

the 11 questions would have a value of 2. Figure 3 presents the SPSS frequency distri-

bution printout for the variable we created (through the Transform ➜ Count Values

command) to count missing values for the 11 parenting items. This printout shows us

that 5.7% of the women had at least one missing value (100% – 94.3% with 0 missing),

96.4% had no more than two missing, and 2.6% had either 10 or 11 missing.

In illustrating factor analysis, we used listwise deletion and ran the analysis

with 1,803 cases. If we had chosen the option within the SPSS factor analysis pro-

gram to use mean substitution, the analysis would have been done on all 1,911

cases. Given that 45 women had no data at all on any of the 11 items, however, it

would not be sensible to impute values for individual items for these women for a

factor analysis. In such a situation, it would probably make most sense to use case

mean substitutions for the 40 women with only one or two missing items, and to use
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N Mean
Std.

Deviation

Missing No. of Extremesa

Count Percent Low High

Weight 1753 45.4963 13.82701 158 8.3 2 73

Health 1904 1.83 1.008 7 .4 0 0

Age 1911 4.6049 1.08312 0 .0 0 0

Siblings 1911 2.81 1.404 0 .0 0 213

FoodSec 1906 5 .3

Gender 1911 0 .0

MVA

Univariate Statistics

a Number of cases outside the range (Q1 – 1.5*IQR, Q3 + 1.5*IQR).

FIGURE 4 SPSS MVA printout: descriptive statistics table.

listwise deletion for the women with more than two items missing. In subsequent

analyses involving the full Parenting Stress and Parenting Enjoyment scales as in-

dependent or dependent variables, scale scores could be imputed for those with

missing values.

TIP: There are no strict guidelines for how many missing items in a scale
make it imprudent to impute item values, although 30% has been
suggested. Our advice is to forego imputation when more than 25% of the
items are missing. In this example with 11 items, two missing values per
case (18%) is probably the most that should be imputed.

In the SPSS MVA module, it is easy to examine the amount of missingness in

different combinations of missing values. The output with 11 variables (the parenting

items) is unwieldy, and so we illustrate with a different example from the same

dataset, using data for children aged 2 to 6. Let us suppose that we wanted to test the

relationship between children’s weight in pounds (the dependent variable) and their

food security/hunger status in a multiple regression analysis, holding constant other

characteristics. The food security variable was created through the mothers’ responses

to a series of questions about their family’s eating patterns. The child’s food security

variable is coded 1 if there is food security and 0 if the child is either in hunger or

on a reduced quality diet. Our analysis will also include data on the child’s age,

gender, number of siblings, and the mother’s health rating of the child (1 � excellent

to 5 � poor). In the MVA descriptive statistics table (Figure 4), we learn that there are

no missing data for the child’s age, gender, or number of siblings. Missingness was

low for the child’s health rating (n � 7) and food security status (n � 5), but 158

mothers (8.3%) either did not know or refused to report their child’s weight.

The MVA “Tabulated Patterns Table” for the three variables with missing data

is shown in Figure 5. In SPSS, the default is to show only those patterns that are

present for at least 1% of the cases, but we used a lower threshold (0.1%) so that all

patterns of missingness would be displayed. This table shows that 1,753 cases

(91.7%) had no missing values on any of the six variables, 151 cases (7.9%) had

missing values for weight only, two cases (.1%) had missing values for both weight
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Number
of 

Cases

Missing Patternsa

Complete
if...b Weightc Agec Siblingsc

Genderd

Age Siblings Gender FoodSec Health Weight Female Male

1753 Age Siblings Gender FoodSec Health Weight 1753 45.4963 4.5881 2.78 907 846

151 X 1904 . 4.7815 3.16 76 75

2 X X 1906 . 5.0000 2.00 1 1

5 X X X 1911 . 5.0000 3.40 3 2

Patterns with less than .1% cases (2 or fewer) are not displayed.
aVariables are sorted on missing patterns.
bNumber of complete cases if variables missing in that pattern (marked with X) are not used.
cMeans at each unique pattern.
dFrequency distribution at each unique pattern.

Tabulated Patterns

FIGURE 5 SPSS MVA printout: tabulated patterns table.

Case # Missing % Missing

Missing and Extreme Value Patternsa

Siblings ChildAge ChildSex Chfoodsec ChHealth ChildWgt

992 2 33.3 – 7 997

45 2 33.3 – 7 997

1213 3 50.0 � S 8 998

1796 3 50.0 S 8 998

1779 3 50.0 � S 8 998

1296 3 50.0 S 7 997

1911 3 50.0 S 8 998

MVA

Missing Patterns (cases with missing values)

� indicates an extreme low value, while � indicates an extreme high value. The range used is (Q1 � 1.5*IQR, Q3 � 1.5*IQR).
a Cases and variables are sorted on missing patterns.

FIGURE 6 SPSS MVA printout: missing patterns—cases with missing values.

and the health rating, and five cases (.3%) had missing cases for all three variables

(marked with Xs). The column labeled “Age” shows the mean age for the cases in

the pattern for a particular row. For example, for the 1,753 cases with no missing val-

ues, the mean age was 4.5881, and for the 151 cases with only weight missing, the

mean age was 4.7815. The last two columns show the number of girls and boys in

the various patterns. The relationship between missingness and other case character-

istics is an important area to explore in trying to understand if missing values are

MCAR or not.

MVA can also be used to examine patterns of missingness within cases, which

may eliminate the need to create a missing values flag. Figure 6 shows a small por-

tion of the MVA output for the cases with missing values on more than one variable

(the full table lists every case with at least one missing value). Figure 6 indicates that

case number 992 had a missing value of 7 (the code for a refusal) for the child’s

health rating and a missing values code of 997 (also a refusal) for the child’s weight.

407



Missing Values

TABLE 2 Comparison of Cases With and Without Missing Values for Child’s Weight, 
on Various Child and Mother Characteristics

Child/Maternal Characteristics

Child’s
Age

Child’s Health
Rating

Child’s
Height (in.)

No. of
Siblings

Mother’s
BMI

Monthly HH
Income

# Weight Present

# Weight Missing

Mean (Present)

Mean (Missing)

t

df

p (2-tail)

1753

158

4.59

4.79

�2.259

1909

.024

1753

151

1.82

1.89

�.758

1902

.448

1336

27

39.97

37.74

1.564

1361

.118

1753

158

1.78

2.15

�3.168

1909

.002

1703

142

27.48

28.58

�.181

1843

.857

1593

133

$1344.06

$1200.17

1.739

1724

.082

The last entry in the table, for case number 1911, had three missing values: systems-

missing (S) for the food security variable, code 8 (don’t know) for the child health

rating, and code 998 (don’t know) for child’s weight. Although this MVA table can

be extremely helpful, the use of a missing values indicator may be preferable when

the number of variables is large (as, for example, our 11 parenting items) or when the

sample size is large.

RELATIONSHIPS AND PATTERNS OF MISSINGNESS There are two reasons for

analysts to explore the relationship between missingness and other variables in the

dataset. The first is to shed light on whether or not the missing data are MCAR. If

missing values are systematically related to other variables, then they are not

MCAR—they are either MAR or MNAR, although it is difficult to know for sure

which of the two patterns apply. A second reason to examine patterns of missingness

is to understand the nature and extent of any biases for interpretive purposes. If, for

example, control group members drop out of a study at a higher rate than those in the

experimental group, then the missing outcome values indicate attrition bias that

should be reported and taken into consideration in discussing study results.

For those without access to SPSS’s Missing Values Analysis, the procedure for

exploring relationships with missingness is fairly straightforward, but requires a bit

of effort. The first step is to create a dummy variable indicating whether or not each

case has a real data value or a missing value on the target variable. As an example, let

us create a missing values indicator for the variable in our dataset with considerable

missing data, children’s weight. Using the Compute command in SPSS, we created

the variable misswate and set it to 0 if the mother reported her child’s weight and 1 if

the data are missing. Next, we can use t tests and chi-square tests to see whether hav-

ing missing data on weight is systematically related to other characteristics of the

child or the mother.

Table 2 summarizes results from a series of t tests. (A similar table can be cre-

ated within the MVA module without needing to create a missing values indicator

variable.) The bottom row of Table 2 indicates that those with versus those without

missing values on child’s weight are not significantly different in terms of the child’s

health rating, child height, mother’s body mass index, and monthly household

income. However, mothers who did not report their child’s weight had significantly

older children ( p � .024) and significantly more children in their households 

( p � .002).
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TIP: With small samples, you will need to be careful not to be guided by
significance levels alone. The t tests for the missingness indicator may lack
sufficient power to reveal real differences that exist. When the means look
different even though p values are greater than .05, it may be a good idea
to compute an effect size index such as Cohen’s d to consider the
magnitude of the effect of missingness.

A series of chi-square analyses were also run to see if weight-missingness was

related to categorical variables (not shown). We found that missingness was unrelated

to the child’s gender, race, food security status, or hospitalization within the prior

year, or to the mother’s current marital status. However, missingness was significant-

ly related to the mother’s education. Mothers who had not completed high school

were significantly more likely to have missing child weight information 

(p � .005), and women who had post–high school education were significantly less

likely to have this missing information (p � .004).

The results of these analyses provide a lot of important information. First, the

various significant relationships strongly support the inference that the missing data

are not MCAR. If the data were missing completely at random, it is unlikely that

there would be so many significant (and interpretable) relationships. Second, the

analyses also offer some modest suggestive evidence that the missing values are

MAR rather than MNAR. For example, if women had a tendency to refuse to provide

information about their children’s weight because of embarrassment about the

weight value itself (a situation that would lead to MNAR), one might expect to find

a significant difference on the mother’s own body mass index value (for which there

was relatively little missing data). However, missingness on children’s weight was

not related to the mother’s BMI. This suggests that weight data are not missing

because of the children’s weight—which would be an MNAR situation. Although

we would ideally want a pattern that is MCAR, this is almost never the case, so any

supporting evidence that the missing values are MAR rather than MNAR is encour-

aging. A third important result is that missingness on weight (our dependent variable

in our substantive analysis) was not significantly related to our primary independent

variable (food security status).

TIP: In the SPSS MVA module, there is a significance test called Little’s
MCAR test, which appears as a footnote to EM means tables. When the
test is significant, you can reject the null hypothesis that the missing value
is MCAR—although you would not know for sure if it was MAR or
MNAR. In our example, the test was significant at p � .007—which is not
surprising, given the many significant t test and chi-square results.

In conclusion, we have learned that the dependent variable for our substantive

analysis, the child’s weight, is missing for about 8% of the children, and that the

missing data are probably MAR. Next, we must make decisions about what to do

about this situation.

Addressing Missing Values Problems

Once analysts have learned something about the amount and pattern of missing val-

ues for their analyses, they can formulate and implement a plan. Although one al-

ways hopes for an MCAR situation so that the results will be unbiased, the reality is
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that MAR or MNAR will most often apply. This means that statistical estimates are

likely to be biased, but the goal is to use a strategy that keeps bias to a minimum.

Uncorrected missing values can also lead to biased estimates of important parame-

ters, and will reduce statistical power.

EXAMPLE OF ALTERNATIVE IMPUTATIONS If you do not have access to the MVA

module in SPSS (which can simultaneously impute missing values for several vari-

ables), you may want to consider using more than one strategy of dealing with miss-

ing values. In our example, there were a handful of cases that had missing values for

weight, food security, and the health rating (Figure 5). Given our large sample size, it

seems acceptable to drop those seven cases, which represent only 0.4% of the sample.

Dropping all cases with missing values, however, would result in a loss of over 8% of

the sample, and so we will impute the missing values for the 151 cases in which only

weight was missing. The use of multiple strategies within a single investigation is not

uncommon, as we will see in the research example in the next section.

Table 3 presents information about various imputation strategies for the missing

weight variable. The first column shows that, using listwise deletion with 1,753 cases,

the mean and SD for the child’s weight are 45.50 and 13.83, respectively. Mean sub-

stitution, which involved replacing all 151 missing with 45.50 did not change the

mean, but it lowered the SD to 13.27. Subgroup mean imputation, which imputed

46.36 for the missing values of boys and 44.69 for the missing values of girls, did not

change the overall sample mean, and did little to improve the deflated SD.
If you are doing imputations without the aid of specialized missing values soft-

ware, regression imputation is likely to be the best bet in many situations, such as in

our current example. For regression imputation, we used data from the 1,753 cases

with complete weight data to regress the child’s weight on three variables: gender,

age, and number of siblings. We chose these predictors because they were

TABLE 3 Comparison of Alternative Missing Values Strategies for Child’s Weight

Method of Imputation

None (Listwise
Deletion)

Mean
Substitution

Subgroup Mean
Substitution (Sex)

Regression (via
SPSS Compute)

EM (via
SPSS MVA)

N 1753 1904 1904 1904 1904
Mean weight, imputed

missing values 
(N � 151)

— 45.50 45.52 
(MMale � 46.36 
MFemale � 44.69)

46.43 46.38

SD, imputed values — 0.00 0.84 5.95 5.93

Mean weight, full
sample

45.50 45.50 45.50 45.57 45.57

SD, full sample 13.83 13.27 13.28 13.37 13.49
R2, predicting weight in

substantive analysisa
.185 .170 .171 .198 .197

b weight, child food
security variable

�1.530 �1.417 �1.441 �1.415 �1.382

Significance of child
food security variable

.023 .023 .021 .022 .026

aChild’s weight regressed on child’s food security status, controlling for child’s age, gender, health rating, and number of siblings in

household.
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significantly correlated with weight, and also because none of these variables had
any missing values themselves. The result of this regression analysis was the follow-

ing equation:

Weight� � 20.909 � 5.377 (age) � 1.794 (gender) � .342 (number of siblings)

The equation was then used to “predict” (impute) the weight of children with missing

weight information, using the SPSS Compute command. Table 3 shows that with our

calculated regression imputation, the mean weight for the sample was 45.57, and the

SD of 13.37 was larger than with mean or subgroup mean substitution.

TIP: If regression is used in the SPSS MVA module, missing values are
imputed for all quantitative values in the analysis, based on predictors that
are declared as quantitative rather than categorical. The SPSS regression
imputation procedure adds the residual of a randomly selected case to each
estimate, which helps to address deflated variability. In our example, the
mean child weight with regression-imputed values via SPSS’s MVA was
45.55, very close to our value of 45.57, and the SD was 13.46.

The bottom three rows of Table 3 show some results for the substantive multi-

ple regression in which we addressed the question: Is a child’s food security status

related to his or her weight, once age, gender, health, and family size are controlled?

(This regression analysis is analogous to an ANCOVA with four covariates.) For

each scenario, we found a significant relationship: Net of the statistically controlled

characteristics, children with a reduced quality diet or hunger weighed significantly

more than children who were food secure (presumably because their diets tended

toward foods that are less expensive and nutritious, but more caloric).

It is important to realize that we do not know which of these analyses does a

better job of representing the truth. In our example, we would have reached the same

conclusion about the food security–weight relationship regardless of how we han-

dled the missing values—probably because the very large sample size gave consider-

able stability to the estimates. With a smaller sample—which is usually the case in

nursing studies—results could well be different. Even in our example, the values for

R2 ranged from .170 (mean substitution) to .198 (regression imputation).

If you have access to special missing values software such as SPSS’s MVA,

you should probably pursue either EM imputation or multiple imputation, especially

if there is evidence that the pattern of missingness is not MCAR. The results from

the EM imputation using MVA in SPSS Version 16.0 are shown in the far right col-

umn of Table 3. As this table shows, the full sample mean with EM-imputed missing

values was 45.57 and the SD was 13.49. The EM results in this particular example

were quite close to the regression results.

SENSITIVITY ANALYSES In many situations, it may be crucial to conduct sensitiv-
ity analyses in which the consequences of alternative missing values strategies are

explored. Table 3 displays, in effect, the results of a sensitivity analysis. We tested

whether our conclusions about the relationships between children’s weight and their

food security status would be different using alternative missing values strategies. In

our case they did not—and this in itself lends credence to the results.

Sensitivity analyses are especially important when there are missing values on

primary outcomes in a clinical trial. If an intervention has been found to be effective
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in trials in which there are missing values (which is usually the case), it can be per-

suasive to demonstrate that the intervention’s effects were found under the most

conservative estimates (e.g., LOCF or “worst case” imputation), and with less con-

servative estimates, for example, via multiple imputation or “best case” imputation.

As another example of a sensitivity analysis, researchers whose analyses

involve group comparisons and who have a slightly different number of cases for dif-

ferent outcomes should consider running their analyses both listwise and pairwise to

see if the results change when the same people are used for all tests.

Example of a sensitivity analysis:

Chen and colleagues (2008) examined the effects of a simplified Tai-Chi exercise

program on the physical health of elders in long-term care facilities. They collected

data from a single group who received the intervention at seven points in time—three

pretests prior to the intervention and four posttests after the intervention began.

Missing data were imputed using last observation carried forward, followed by a

series of sensitivity analyses to test the adequacy of the imputations.

Reporting Missing Values Information

The majority of nursing studies do not mention missing values at all. One can some-

times infer that pairwise deletion was used (for example, when tables show statisti-

cal information for varying numbers of participants), but readers should not have to

make guesses about the researchers’ missing data strategy.

If there are no missing values at all, researchers should state this in their

Method section, preferably in the subsection on data analysis. If values are missing,

researchers should include a paragraph to explain the missing values situation and the

researchers’ approach to the problem. The report should indicate the extent of missing

values, for example, by stating the range of missingness on important variables. The

presumed pattern of missingness (MCAR, MAR, or MNAR) should be reported,

together with evidence supporting the inference. Biases relating to missingness, as

evidenced from t tests or chi-squared analyses comparing those with versus those

without missing values, should be reported. Then, the strategy or strategies that were

used to address missing values should be described, together with the results of any

sensitivity analyses. If thresholds were used to make decisions, these should also be

reported. For example, if variables were discarded when more than a certain percent-

age of the cases had missing information, that threshold should be stated.

TIP: In intervention studies, it is advisable to include a flow chart such as
those suggested in the Consolidated Standards of Reporting Trials or
CONSORT guidelines, which have been adopted by major medical and
nursing journals, such as Nursing Research. CONSORT guidelines
include a template for a flow chart to track participants through a clinical
trial, from eligibility assessment through analysis of outcomes. One explicit
goal of the flow chart is to indicate participant loss over time, for each
study group. Although these materials were specifically designed for use
with RCTs, many aspects of it can be productively applied to any
quantitative study. Further information about the CONSORT guidelines is
available at www.consort-statement.org.
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Research Example

Researchers rarely report the level of detail about miss-

ing values in their reports that we have recommended.

This may partially reflect page constraints in journals,

but may also be the result of “benign neglect” of this

important issue. Here is an example of an article with

fairly good coverage of the missing values situation.

Study: “Factors influencing diabetes self-management

in Chinese people with type 2 diabetes” (Xu, Toobert,

Savage, Pan, & Whitmer, 2008).

Study Purpose: The purpose of this study was to test a

complex model of the effects of individual and environ-

mental factors on diabetes self-management among

patients with type 2 diabetes in Beijing China.

Methods: The researchers gathered cross-sectional data

from a convenience sample of 201 Chinese adults during

outpatient visits at one of China’s largest hospitals. The

researchers distributed self-administered questionnaires

to eligible patients. The questionnaires incorporated six

psychosocial scales, a demographic form, and questions

about diabetes history. The six multi-item scales

measured variables conceptualized as affecting diabetes

self-management (e.g., diabetes knowledge, diabetes

self-efficacy, social support, and beliefs in treatment

effectiveness).

Missing Data Analysis: The principal analyses involved

a sophisticated test of a theoretical model using structur-

al equations modeling. Prior to their substantive analy-

ses, the researchers addressed missing values problems.

The amount of missing data varied considerably across

variables, from a low of 0.5% to 6.0% (the paper did not

indicate whether missingness was at the item or variable

level). According to the report, the pattern of missing-

ness was MAR. For variables with missing values in the

0.5% to 2.5% range, mean substitution was used to im-

pute missing values. For variables with 2.5% or more

missing values, the missing values were imputed via re-

gression. Therefore, all cases and all variables were used

in the substantive analyses.

Results: The researchers found that, in their final model, a

patient’s belief in treatment effectiveness and their diabetes

self-efficacy were the proximal factors affecting a patient’s

ability to self-manage their diabetes. Diabetes knowledge,

social support, and provider communication had an indi-

rect effect on self-management, through the effects of self-

efficacy and beliefs about treatment effectiveness.

The Discussion section of a report should also provide an interpretation of the ef-

fect of the missing values problem on the results. Research evidence can best be trusted

when missing values have been appropriately handled, and when researchers take po-

tential biases into account in drawing conclusions about the evidence from their data.

Summary Points

• Missing values are a pervasive problem in re-

search, and can threaten the validity of the study.

• Various factors must be considered in developing a

missing values strategy, including the role and

type of variables with missing data in the analysis,

the extent of missingness, and, of particular im-

portance, the pattern of missingness.

• There are three basic missing values patterns. The

first, and most desirable, is missing completely at
random (MCAR), which occurs when cases with

missing values are just a random subsample of all

cases in the sample. When data are MCAR, analy-

ses remain unbiased, although power is reduced.

• Data can be considered missing at random (MAR)

if missingness is related to other variables—but not
related to the value of the variable that has the miss-

ing values. This pattern is perhaps the most preva-

lent pattern of missingness in clinical research.

• The third pattern is missing not at random
(MNAR), a pattern in which the value of the vari-

able that is missing is related to its missingness.

This is often found for such variables as income.

In actual studies, it is often difficult to distinguish

the MAR and MNAR pattern.

• The two primary approaches to addressing missing

values are deletion methods (in which missing
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values are removed from subsequent analyses) or

imputation methods (in which the missing values

are estimated and substituted for the missing codes).

• Deletion methods include listwise deletion
(complete case analysis) in which cases with miss-

ing values are dropped; pairwise deletion (available
case analysis) in which cases with missing values

are dropped on an analysis-by-analysis basis; and

variable deletion, in which an entire variable is re-

moved. The latter may make sense when the variable

has a considerable amount of missing data and it is

not critical to the analysis. Most computer programs

use either listwise or pairwise deletion as the default.

• Imputation methods involve taking information

from other sample members, or from the case with

missing values, to estimate what the value would

have been had it not been missing. A general prob-

lem is that variance is lower with imputed values

than it would have been with complete data.

• Until recently mean substitution (replacing miss-

ing values with the mean for the sample or a sub-

group) was widely used. Its virtues are ease and

simplicity, but this method is no longer considered

a good strategy. Case mean substitution (imput-

ing a mean from other variables within the case)

can, however, be profitably used to impute values

of items in a multi-item scale.

• Regression imputation involves using complete

cases to “predict” what the missing value would

have been, based on other variables in the dataset.

Variability remains underestimated using regres-

sion, and so a more sophisticated approach

(regression with error) adds random error into

the imputed values.

• The approach most often used to impute values for

outcome variables in randomized controlled trials

is last observation carried forward (LOCF),

which imputes the missing outcome using the pre-

vious measurement of that same outcome. A vari-

ation involves substituting the mean of all previ-

ous measurements.

• Expectation-maximization (EM) imputation is

a two-step process that uses maximum likelihood

imputation. It is preferred to most other methods,

and is available in a special module of SPSS that

offers Missing Values Analysis (MVA).

• Multiple imputation (MI) is the current “gold stan-

dard” for addressing missing values problems, but

has not often been used because of its complexity

and the limited availability of appropriate software,

although that situation is changing. MI addresses a

fundamental issue—the uncertainty of any given

estimate—by imputing several (m) estimates, each

of which has an element of randomness introduced.

Results across the m imputations are later pooled.

• Researchers should examine the patterns and

extent of missingness in developing a missing val-

ues strategy. A useful approach is to use senstivity
analyses to understand how alternative strategies

affect the substantive results.

• Research reports should contain descriptions

about the amount and pattern of missing values in

the analyses, and steps researchers took to address

the problem.

Exercises

The following exercises cover concepts presented in this

chapter. Answers to Part A exercises are indicated with a dag-

ger (†). Exercises in Part B involve computer analyses using

the datasets provided with this text, and answers and com-

ments are offered on the Web site.

PART A EXERCISES

A1. The following table shows actual data values on the seven

items used to create the Parenting Stress scale in our factor

analysis of 11 parenting items for five mothers. Each case

has a missing value, coded 99. Impute values to replace the

missing values, using case mean substitution.

2. Child Hard
to Care For

3. Many Things
Bother Me

4. Given Up a
Lot for Child

6. Trapped by
Parenthood

7. Lose Patience
with Child

8. Often Feel
Angry with Child

11. More Work
than Pleasure

0 1 10 99 0 0 10
0 0 3 0 0 99 4

99 2 10 1 0 1 0
4 2 0 3 99 1 10
5 4 99 0 0 0 5

†

414



Missing Values

Item 2 4 6 7 8

Mean 2.66 5.91 2.93 2.80 2.00

N 1857 1840 1841 1842 1845

A2. For the five items in Exercise A.1 with missing values, the

item means for all cases for whom data were available are

as follows:

the Target Variable field, enter misscesd; you can add a de-

scriptive label such as “Number of missing CESD items.”

Then move the 20 individual CES-D items into the field la-

beled Numeric Variables. Click the Define Values pushbutton

to get to the next dialog box. In the section labeled “Value,”

select System- or user-missing, then click the Add button.

Click Continue, then OK. Next, run a frequency distribution

and descriptive statistics for the new misscesd variable, and

use the output to answer the following questions: (a) How

many women answered all 20 items? (b) How many women

answered none of the 20 items? (c) What percent of cases had

missing values on more than half of the items? (d) What was

the mean, median, and modal number of missing items? (e) If

we used the standard of imputing missing values only for

items with no more than 25% of the items missing, for how

many cases would we impute missing values? If we then

computed CES-D scales scores, for what percent of the cases

would we not be able to compute a CES-D score?

B3. In the situation such as the one we have with missing CES-D

items, we would recommend case mean substitution for

cases with five or fewer missing values, but achieving this

through SPSS commands is tedious, particularly for scales

with 20 items such as the CES-D. With small samples, it is

likely to be simpler to manually fill in case-mean imputed

values. We will guide you through the imputation of a sin-

gle missing item to illustrate the process. We will do this

for item 9, the one with the highest percentage of missing

values. Select Transform ➜ Compute Variable, which will

create a new variable. (We could have imputed the missing

values into the original cesd9 variable, but it is often wise

to create a new variable and to preserve the original in case

you make a mistake in the imputation process.) Enter a

name for the Target Variable, such as newcesd9. To set the

new variable equal to old CES-D values, enter cesd9 in the

field for Numeric Expression. Then click OK. Next, go

back to the Compute Variable dialog box, leaving

newcesd9 as the Target Variable. In the Numeric

Expression field, you need to tell the computer to add the

values of the other 19 items and divide by 19, to set

newcesd9 equal to the person’s mean for all other items.

For the CES-D scale, we need to use the four reverse-

coded items to get the appropriate value. Here is the com-

mand to insert in the Numeric Expression field:

(cesd1 � cesd2 � cesd3 � cesd4rev � cesd5 � cesd6 �

cesd7 � cesd8rev � cesd10 � cesd11 � ces12rev �

cesd13 � cesd14 � cesd15 � ces16rev � cesd17 �

cesd18 � cesd19 � cesd20) /19

Next, click the If (optional case selection) button, which

brings up a new dialog box. Select “Include if case satis-

fies condition.” Type in the following in the blank field:

MISSING (cesd9), then click Continue and OK. This will

impute a value for newcesd9 only for those cases with a

missing value—all others will have the original data. Now,

run frequencies and descriptive statistics for both cesd9

Age
(yrs)

Gender 
(0 � female, 1 � male)

No. of
siblings

Weight
(pounds)

5 1 7 ?
6 1 3 ?
3 1 4 ?
5 0 4 ?
4 0 4 ?

Write a brief statement about whether you think that mean

substitution or case mean substitution would be preferred

for the five cases with a missing value, based on the infor-

mation you obtained in Exercise A1. Provide a rationale for

your answer.

A3. Using the guideline we suggested in a Tip, would it be

advisable to impute missing values for two items on the

Parenting Stress subscale?

A4. Manually impute the missing child weight values, using the

regression equation presented in the text, for children with

the following values on the predictor variables:

A5. Look at a recent issue of a nursing research journal, such as

Nursing Research, Journal of Advanced Nursing, or Research
in Nursing & Health. How many of the quantitative studies

had any reference to missing values? Did any article discuss

patterns and amounts of missingness? What methods were

used to address missing values?

PART B EXERCISES

B1. For these exercises, you will be using the SPSS dataset

Polit2SetC. We will begin by looking at individual responses

to items on the Center for Epidemiologic Studies—

Depression (CES-D) Scale. For a description of these 20

items, refer to Exercise B1 in the chapter "Factor Analysis

and Internal Consistency Reliability Analysis." If you did

this Exercise B1 and have kept your output, you can answer

the questions here without redoing any analyses. Otherwise,

run frequency distributions for the 20 items (cesd1 to

cesd20), ignoring the four items that were reverse coded.

Then, answer the following questions: (a) What was the

range of missing data for individual items, in terms of num-

bers and percentages? (b) Which item had the least missing

data? (c) Which item had the most missing data? (d) How

would you describe the “typical” amount of missing data for

these 20 items?

B2. Now we will look at how many missing values individual par-

ticipants had for these 20 CES-D items. To do this, we need to

create a new variable (we will call it misscesd) that is a count of

how many values are missing for each person. Select

Transform ➜ Count Occurrences of Values Within Cases. In

†

†

†

†

†
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and newcesd9 and answer the following questions. 

(a) How many cases were missing for the newcesd9 variable?

(b) For how many cases were imputations performed? 

(c) Why do you think imputations were not done for all

missing cases? (d) Did the mean value change for the new

variable, compared to the original? How about the SD? 

(e) What was the range of values for just the new imputed

values? (You will need to glean this information by com-

paring the frequency distributions for cesd9 and newcesd9.)

B4. The Polit2SetC dataset includes the variable cesd, which is

a total CES-D score for cases with nonmissing values, plus

cases for whom missing values were imputed using case

mean substitution. (The imputation was done only for

cases that had no more than five missing values.) Looking

at the output for Exercise B2, how many cases should have

a CES-D score? Confirm that your answer corresponds to

what is in the dataset by running descriptive statistics on

cesd. (Note that CES-D scores were computed by adding

together all item values with appropriate item reversals,

and then subtracting 20. This is because the original CES-D

scale uses codes of 0, 1, 2, and 3, rather than 1, 2, 3, and 4.

It is desirable to have scores on the same scale as the orig-

inal because cutoff scores are used to establish whether a

person is at risk or at high risk of clinical depression.)

B5. We will next explore patterns of missingness for the CES-D

scale score. First, create a missing values indicator variable,

which we will call cesdstat. Select Transform ➜ Compute

Variable, and enter cesdstat into the slot for Target Variable.

Set the new variable equal to 1 by entering the number 1

into the Numeric Expression field, then click OK. Then,

click Compute Variable again, enter the number 2 in the

Numeric Expression field, and click the If pushbutton. In

the next dialog box, click “Include if case satisfies condi-

tion,” and then enter the following: cesd � 0 AND cesd

� 60. This will set the value of the new cesdstat variable to

2 for those cases that have a valid value, which is between

0 and 60. Then click Continue and OK. (The values can be

labeled by clicking the Variable View tab at the bottom of

the screen—for example code 2 could be labeled, Has a
CESD score.) Check that this new cesdstat variable has been

properly created by running a frequency distribution. How

many cases were coded 1 and how many were coded 2?

Does this correspond to what you learned in Exercise B4?

B6. Next, we will run a series of statistical tests to see if miss-

ingness is related to other characteristics of the women in

this sample, beginning with t tests. Select Analyze ➜
Compare Means ➜ Independent Samples T Test. Move the

following quantitative variables into the Test Variable list:

Age at the time of the interview; Age at first birth; # of

children living in HH past month; Family income, all

sources; Number of types of abuse of 4 mentioned; SF-12

Physical Health Component Score; and SF-12 Mental

Health Component score. Then, enter cesdstat as the

Grouping Variable and click the Define Groups pushbut-

ton. Enter the value 1 for Group 1 and the value 2 for

Group 2, then click Continue. Click the Options pushbut-

ton and make sure that Missing Values is set to: Exclude

cases analysis by analysis (i.e., pairwise deletion for these

tests of missing versus nonmissing CES-D values). Then

click Continue and OK to run the analysis. Answer the fol-

lowing questions based on the output: (a) We know from

the previous exercise that there are no missing values for

the new variable cesdstat. What is the extent of missing

values for other variables in these analyses? (b) Looking at

the column labeled Sig. (2-tailed) in the Independent

Samples Test table, were there any significant differences

between women who did and did not have a CES-D score

for any variables in the analysis? If so, for which variables?

B7. We will continue to test whether missingness on the CES-D

scale is related to mothers’ characteristics, this time with

chi-square tests to test differences in proportions on cate-

gorical variables. Select Analyze ➜ Descriptive Statistics

➜ Crosstabulations. Use cesdstat as the column variable,

and the following variables as row variables: race/ethnicity,

educational attainment, current employment status, and

marital status. Select the chi-square test as the statistics op-

tion, and request observed column percentages in the Cells

option. Answer the following questions based on the out-

put: (a) What is the extent of missing values for the four

variables in these analyses? (b) Were there significant dif-

ferences between women who did and those who did not

have a CES-D score on any of the variables in these analyses?

(c) Based on our findings in Exercise B6 and B7, would

you infer that the pattern of missingness is MCAR, MAR,

or MNAR?

B8. If you have access to the SPSS Missing Values Analyses,

run the MVA with the same set of variables and use Little’s

MCAR test to see if you reach different conclusions based

on the results of that test than you did based on results

from Exercises B6 and B7.

B9. With only 3.8% missing values on the CES-D scale in a

very large sample, we might well use listwise deletion for

any further substantive analyses with the cesd variable. As

an exercise, however, we will impute missing values on the

CES-D total scale using regression analysis. We will re-

strict the regression to two predictors that are significantly

correlated with CES-D scores, but that have minimal miss-

ing values themselves: educational attainment and current

employment status. (Other variables with low levels of

missing data—age, race/ethnicity, and number of chil-

dren—were not significantly correlated with CES-D

scores; you could verify this yourself.) Use the instructions

for running a standard multiple regression as discussed in

the topic on Multiple Regression, with cesd as the depend-

ent variable and educational attainment and current em-

ployment status as the independents. Then answer the

following questions: (a) How many cases were used in this

regression analysis? (b) What was the value of R? 

(c) Was the overall model statistically significant? 

(d) Was educational attainment significant, once current

employment was controlled? (e) Was current 

†

†

†

†

†
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employment status significant with educational attain-

ment controlled? (f) Interpret what the b weights mean in

terms of scores on the CES-D. (g) What is the regression

equation for imputing missing values on cesd?

B10. Using the answer to Exercise B9 (g), impute missing

CES-D scores. First, create a new CES-D variable so that

any possible mistakes do not affect the original scores.

With the Compute Variable command, set the new variable

(e.g., newcesd) equal to the original, cesd. Then, do another

Compute Variable, and set newcesd equal to the predicted

value from the regression equation. Click the If pushbutton

and select “Include if case satisfies condition,” and then

enter: MISSING (cesd). This will result in imputations

only for cases with missing CES-D scores (and nonmissing

values for education and current employment status). Click

continue, then OK. Then run descriptive statistics (within

the Frequencies program) for both cesd and newcesd and

answer the following questions: (a) Look at the Polit2SetC

dataset in Data view and find the values for the newcesd
variable. Case 17 originally had a missing value for cesd.
What is the imputed value for this case on the newcesd
variable? (b) How many cases have valid CES-D scores for

the newcesd variable? (c) In an earlier exercise, we learned

that there were missing values on current employment sta-

tus for two women. What would explain why there are not

two missing values for newcesd? (d) Are the means for

cesd and newcesd the same? (e) Are the SDs for the two

variables the same?

B11. If you have access to the Missing Values Analysis mod-

ule in SPSS, impute the missing values for cesd using ex-

pectation maximization. Compare the means and SDs

obtained through regression and EM.

Missing Values

†

Answers to Exercises

A1. 3.50; 1.17; 2.33; 3.33; and 2.33

A3. Using the guideline of not imputing more than 25% of missing items per case, a case with two of the seven items missing

should probably not have imputed item values.

A4. 47.19; 53.94; 37.47; 46.43; and 41.05
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GLOSSARY
Available case analysis Analysis based on cases with nonmissing data on a selective (pairwise) basis, involving the deletion of

cases with missing data only when one variable is paired with another variable that has missing data.

Complete case analysis Analysis based only on cases with nonmissing data for all variables, i.e., using listwise deletion as the

method of dealing with missing values by eliminating cases with any missing data.

Deletion methods A broad class of methods used to address missing values problems by deletion of cases or variables.

Expectation-maximization (EM) imputation A sophisticated single-imputation process that generates an estimated value for

missing data in two steps (an expectation or E-step and a maximization or M-step), using maximum likelihood estimation.

Imputation methods A broad class of methods used to address missing values problems by estimating (imputing) the missing

values.

Intention-to-treat analysis An approach to analyzing data from all subjects in a randomized controlled trial, regardless of

whether or not they dropped out of the study, to ensure the integrity of random assignment.

Last observation carried forward (LOCF) An approach to imputing missing values for outcomes in a clinical trial that involves

replacing missing values with a person’s obtained values on the same outcome at the previous point of data collection.

Listwise deletion A method of dealing with missing values in a dataset, involving the elimination of cases with missing data; also

called a method of complete case analysis.

Mean substitution A technique for addressing missing data problems by substituting missing values on a variable with the mean

for that variable.

Missing at random (MAR) Values that are missing from a dataset such that missingness is unrelated to the value of the missing

data, after controlling for another variable; that is, missingness is unrelated to the value of the missing data, but is related to values

of other variables in the dataset.

Missing completely at random (MCAR) Values that are missing from a dataset such that missingness is unrelated either to the

value of the missing data, or to the value of any other variable; the subsample with missing values is a totally random subset of the

original sample.

Missing not at random (MNAR) Values that are missing from a dataset such that missingness is related to the value of the

missing data and, usually, to values of other variables as well.

Multiple imputation (MI) The gold standard approach for dealing with missing values, involving the imputation of multiple

estimates of the missing value, which are ultimately pooled and averaged in estimating parameters.

Pairwise deletion A method of dealing with missing values in a dataset, involving the deletion of cases with missing data on a

selective basis (i.e., deletion of a case only when one variable is paired with another variable that has missing data); also called a

method of available case analysis.
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Regression imputation An approach to imputing (estimating) a missing value by using multiple regression analysis to predict the

missing value.

Case mean substitution An approach to dealing with missing values that involves imputing a missing value with the mean of

other relevant variables from the person with the missing value (e.g., using the mean of nine nonmissing items on a scale to impute

the value of the 10th item, which is missing).

External validity The degree to which results from a study can be generalized to settings or samples other than those used in the

research.

Statistical conclusion validity The degree to which inferences about relationships and differences from statistical analysis of the

data are accurate—i.e., free from Type I or Type II errors.
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TABLE 1 Areas of the Normal Distribution for Selected z Scores

Column (1): z Score (or �z)

Column (2): Probability of a value � z

or

Probability of a value � �z

Column (3): Probability of a value � 0 and � z

or

Probability of a value � �z and � 0

(1) 
z

(2) 
� z

(3) 
� 0 and � z

(1) 
z

(2) 
� z

(3) 
� 0 and � z

0.00 .500 .000 1.10 .136 .364

0.05 .480 .020 1.20 .115 .385

0.10 .460 .040 1.30 .097 .403

0.15 .440 .060 1.40 .081 .419

0.20 .421 .079 1.50 .067 .433

0.25 .401 .099 1.60 .055 .445

0.30 .382 .118 1.70 .045 .455

0.35 .363 .137 1.80 .036 .464

0.40 .345 .155 1.90 .029 .471

0.45 .326 .174 1.96 .025 .474

0.50 .309 .192 2.00 .023 .477

0.55 .291 .209 2.10 .018 .482

0.60 .274 .226 2.20 .014 .486

0.65 .258 .242 2.30 .011 .489

0.70 .242 .258 2.40 .008 .492

0.75 .227 .273 2.50 .006 .494

0.80 .212 .288 2.58 .005 .495

0.85 .198 .302 2.60 .005 .495

0.90 .184 .316 2.70 .004 .496

0.95 .171 .329 2.80 .003 .497

1.00 .159 .341 2.90 .002 .498

3.00 .001 .499

Appendix: Theoretical Sampling Distribution Tables
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Appendix: Theoretical Sampling Distribution Tables

TABLE 2 Critical Values for the t Distribution

df Significance Level (�), Two-Tailed Test:

Significance Level (�), One-Tailed Test:

Confidence Levels for CIs:

.10

.05

90%

.05

.025

95%

.02

.01

98%

.01

.005

99%

.001

.0005

99.9%

1 6.31 12.71 31.82 63.66 636.62

2 2.92 4.30 6.97 9.93 31.60

3 2.35 3.18 4.54 5.84 12.94

4 2.13 2.78 3.75 4.60 8.61

5 2.02 2.57 3.37 4.03 6.86

6 1.94 2.45 3.14 3.71 5.96

7 1.90 2.37 3.00 3.45 5.41

8 1.86 2.31 2.90 3.36 5.04

9 1.83 2.26 2.82 3.25 4.78

10 1.81 2.23 2.76 3.17 4.58

11 1.80 2.20 2.72 3.11 4.44

12 1.78 2.18 2.68 3.06 4.32

13 1.77 2.16 2.65 3.01 4.22

14 1.76 2.15 2.62 2.98 4.14

15 1.75 2.13 2.60 2.95 4.07

16 1.75 2.12 2.58 2.92 4.02

17 1.74 2.11 2.57 2.90 3.97

18 1.73 2.10 2.55 2.88 3.92

19 1.73 2.09 2.54 2.86 3.88

20 1.73 2.09 2.53 2.85 3.85

21 1.72 2.08 2.52 2.83 3.82

22 1.72 2.07 2.51 2.82 3.79

23 1.71 2.07 2.50 2.81 3.77

24 1.71 2.06 2.49 2.80 3.75

25 1.71 2.06 2.49 2.79 3.73

26 1.71 2.06 2.48 2.78 3.71

27 1.71 2.05 2.47 2.77 3.69

28 1.70 2.05 2.47 2.76 3.67

29 1.70 2.05 2.46 2.76 3.66

30 1.70 2.04 2.46 2.75 3.65

40 1.68 2.02 2.42 2.70 3.55

60 1.67 2.00 2.39 2.66 3.46

120 1.66 1.98 2.36 2.62 3.73

� 1.65 1.96 2.33 2.58 3.29
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Appendix: Theoretical Sampling Distribution Tables

TABLE 3 Critical Values of F: � � .05

➞dfB

dfW

1 2 3 4 5 6 8 12 24 �

1 161.4 199.5 215.7 224.6 230.2 234.0 238.9 243.9 249.0 254.3

2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.45 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.84 8.74 8.64 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.77 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.53 4.26

6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.84 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.41 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.12 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 2.90 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.74 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.61 2.40

12 4.75 3.88 3.49 3.26 3.11 3.00 2.85 2.69 2.50 2.30

13 4.67 3.80 3.41 3.18 3.02 2.92 2.77 2.60 2.42 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.35 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.29 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.24 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.19 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.15 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.11 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.08 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.05 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.03 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.38 2.20 2.00 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 1.98 1.73

25 4.24 3.38 2.99 2.76 2.60 2.49 2.34 2.16 1.96 1.71

26 4.22 3.37 2.98 2.74 2.59 2.47 2.32 2.15 1.95 1.69

27 4.21 3.35 2.96 2.73 2.57 2.46 2.30 2.13 1.93 1.67

28 4.20 3.34 2.95 2.71 2.56 2.44 2.29 2.12 1.91 1.65

29 4.18 3.33 2.93 2.70 2.54 2.43 2.28 2.10 1.90 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 1.89 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.79 1.51

60 4.00 3.15 2.76 2.52 2.37 2.25 2.10 1.92 1.70 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.02 1.83 1.61 1.25

� 3.84 2.99 2.60 2.37 2.21 2.09 1.94 1.75 1.52 1.00

(Continued)

➞

dfB (df between) � Number of groups � 1

dfW (df within) � N � Number of groups
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Appendix: Theoretical Sampling Distribution Tables

TABLE 3 Critical Values of F: � � .01 (Continued) 

➞dfB

dfW

1 2 3 4 5 6 8 12 24 �

1 4052 4999 5403 5625 5764 5859 5981 6106 6234 6366

2 98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.42 99.46 99.50

3 34.12 30.81 29.46 28.71 28.24 27.91 27.49 27.05 26.60 26.12

4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 13.93 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.47 9.02

6 13.74 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.31 6.88

7 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.07 5.65

8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.28 4.86

9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.73 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.33 3.91

11 9.65 7.20 6.22 5.67 5.32 5.07 4.74 4.40 4.02 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 3.78 3.36

13 9.07 6.70 5.74 5.20 4.86 4.62 4.30 3.96 3.59 3.16

14 8.86 6.51 5.56 5.03 4.69 4.46 4.14 3.80 3.43 3.00

15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.29 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.18 2.75

17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.45 3.08 2.65

18 8.28 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.00 2.57

19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 2.92 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 2.86 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 2.80 2.36

22 7.94 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.75 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.70 2.26

24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.66 2.21

25 7.77 5.57 4.68 4.18 3.86 3.63 3.32 2.99 2.62 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.58 2.13

27 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.55 2.10

28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.52 2.06

29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.49 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.47 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.29 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.12 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 1.95 1.38

� 6.64 4.60 3.78 3.32 3.02 2.80 2.51 2.18 1.79 1.00

➞

dfB (df between) � Number of groups � 1

dfW (df within) � N � Number of groups
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Appendix: Theoretical Sampling Distribution Tables

TABLE 3 Critical Values of F: � � .001 (Continued)

➞dfB

dfW

1 2 3 4 5 6 8 12 24 �

1 405284 500000 540379 562500 576405 585937 598144 610667 623497 636619

2 998.5 999.0 999.2 999.2 999.3 999.3 999.4 999.4 999.5 999.5

3 167.5 148.5 141.1 137.1 134.6 132.8 130.6 128.3 125.9 123.5

4 74.14 61.25 56.18 53.44 51.71 50.53 49.00 47.41 45.77 44.05

5 47.04 36.61 33.20 31.09 29.75 28.84 27.64 26.42 25.14 23.78

6 35.51 27.00 23.70 21.90 20.81 20.03 19.03 17.99 16.89 15.75

7 29.22 21.69 18.77 17.19 16.21 15.52 14.63 13.71 12.73 11.69

8 25.42 18.49 15.83 14.39 13.49 12.86 12.04 11.19 10.30 9.34

9 22.86 16.39 13.90 12.56 11.71 11.13 10.37 9.57 8.72 7.81

10 21.04 14.91 12.55 11.28 10.48 9.92 9.20 8.45 7.64 6.76

11 19.69 13.81 11.56 10.35 9.58 9.05 8.35 7.63 6.85 6.00

12 18.64 12.97 10.80 9.63 8.89 8.38 7.71 7.00 6.25 5.42

13 17.81 12.31 10.21 9.07 8.35 7.86 7.21 6.52 5.78 4.97

14 17.14 11.78 9.73 8.62 7.92 7.43 6.80 6.13 5.41 4.60

15 16.59 11.34 9.34 8.25 7.57 7.09 6.47 5.81 5.10 4.31

16 16.12 10.97 9.00 7.94 7.27 6.81 6.19 5.55 4.85 4.06

17 15.72 10.66 8.73 7.68 7.02 6.56 5.96 5.32 4.63 3.85

18 15.38 10.39 8.49 7.46 6.81 6.35 5.76 5.13 4.45 3.67

19 15.08 10.16 8.28 7.26 6.61 6.18 5.59 4.97 4.29 3.52

20 14.82 9.95 8.10 7.10 6.46 6.02 5.44 4.82 4.15 3.38

21 14.59 9.77 7.94 6.95 6.32 5.88 5.31 4.70 4.03 3.26

22 14.38 9.61 7.80 6.81 6.19 5.76 5.19 4.58 3.92 3.15

23 14.19 9.47 7.67 6.69 6.08 5.65 5.09 4.48 3.82 3.05

24 14.03 9.34 7.55 6.59 5.98 5.55 4.99 4.39 3.74 2.97

25 13.88 9.22 7.45 6.49 5.88 5.46 4.91 4.31 3.66 2.89

26 13.74 9.12 7.36 6.41 5.80 5.38 4.83 4.24 3.59 2.82

27 13.61 9.02 7.27 6.33 5.73 5.31 4.76 4.17 3.52 2.75

28 13.50 8.93 7.19 6.25 5.66 5.24 4.69 4.11 3.46 2.70

29 13.39 8.85 7.12 6.19 5.59 5.18 4.64 4.05 3.41 2.64

30 13.29 8.77 7.05 6.12 5.53 5.12 4.58 4.00 3.36 2.59

40 12.61 8.25 6.60 5.70 5.13 4.73 4.21 3.64 3.01 2.23

60 11.97 7.76 6.17 5.31 4.76 4.37 3.87 3.31 2.69 1.90

120 11.38 7.31 5.79 4.95 4.42 4.04 3.55 3.02 2.40 1.56

� 10.83 6.91 5.42 4.62 4.10 3.74 3.27 2.74 2.13 1.00

➞

dfB (df between) � Number of groups � 1

dfW (df within) � N � Number of groups
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Appendix: Theoretical Sampling Distribution Tables

TABLE 4 Critical Values of x 2

Level of Significance

df .10 .05 .02 .01 .001

1 2.71 3.84 5.41 6.63 10.83

2 4.61 5.99 7.82 9.21 13.82

3 6.25 7.82 9.84 11.34 16.27

4 7.78 9.49 11.67 13.28 18.46

5 9.24 11.07 13.39 15.09 20.52

6 10.64 12.59 15.03 16.81 22.46

7 12.02 14.07 16.62 18.48 24.32

8 13.36 15.51 18.17 20.09 26.12

9 14.68 16.92 19.68 21.67 27.88

10 15.99 18.31 21.16 23.21 29.59

11 17.28 19.68 22.62 24.72 31.26

12 18.55 21.03 24.05 26.22 32.91

13 19.81 22.36 25.47 27.69 34.53

14 21.06 23.68 26.87 29.14 36.12

15 22.31 25.00 28.26 30.58 37.70

16 23.54 26.30 29.63 32.00 39.25

17 24.77 27.59 31.00 33.41 40.79

18 25.99 28.87 32.35 34.81 42.31

19 27.20 30.14 33.69 36.19 43.82

20 28.41 31.41 35.02 37.57 45.32

21 29.62 32.67 36.34 38.93 46.80

22 30.81 33.92 37.66 40.29 48.27

23 32.01 35.17 38.97 41.64 49.73

24 33.20 36.42 40.27 42.98 51.18

25 34.38 37.65 41.57 44.31 52.62

26 35.56 38.89 42.86 45.64 54.05

27 36.74 40.11 44.14 46.96 55.48

28 37.92 41.34 45.42 48.28 56.89

29 39.09 42.56 46.69 49.59 58.30

30 40.26 43.77 47.96 50.89 59.70
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Appendix: Theoretical Sampling Distribution Tables

TABLE 5 Critical Values of the U Statistic (for � � .05 Two-Tailed Test)

n1➞

n2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 —a — — — — — — — — — — — — — — — — — — —

2 — — — — — — — 0 0 0 0 1 1 1 1 1 2 2 2 2

3 — — — — 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

4 — — — 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13

5 — — 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 — — 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27

7 — — 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

8 — 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41

9 — 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48

10 — 0 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55

11 — 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62

12 — 1 4 7 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69

13 — 1 4 8 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76

14 — 1 5 9 13 17 22 26 31 36 40 45 50 55 59 64 67 74 78 83

15 — 1 5 10 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90

16 — 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98

17 — 2 6 11 17 22 28 34 39 45 51 57 63 67 75 81 87 93 99 105

18 — 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112

19 — 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119

20 — 2 8 13 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127

aA dash indicates that no decision is possible for the specified n.

NOTE: To be statistically significant, the calculated U must be equal to or less than the tabled value.

➞
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Appendix: Theoretical Sampling Distribution Tables

TABLE 6 Critical Values of r

Test Level of Significance

df 2-Tailed �: 
(1)

.10 
(2)

.05 
(3)

.02 
(4)

.01 
(5)

.001 
(6)

1 .988 .997 .9995 .9999 1.00

2 .900 .950 .980 .990 .999

3 .805 .878 .934 .959 .991

4 .729 .811 .882 .917 .974

5 .669 .754 .833 .874 .951

6 .622 .707 .789 .834 .925

7 .582 .666 .750 .798 .898

8 .549 .632 .716 .765 .872

9 .521 .602 .685 .735 .847

10 .497 .576 .658 .708 .823

11 .476 .553 .634 .684 .801

12 .458 .532 .612 .661 .780

13 .441 .514 .592 .641 .760

14 .426 .497 .574 .623 .742

15 .412 .482 .558 .606 .725

16 .400 .468 .542 .590 .708

17 .389 .456 .528 .575 .693

18 .378 .444 .516 .561 .679

19 .369 .433 .503 .549 .665

20 .360 .423 .492 .537 .652

25 .323 .381 .445 .487 .597

30 .296 .349 .409 .449 .554

35 .275 .325 .381 .418 .519

40 .257 .304 .358 .393 .490

45 .243 .288 .338 .372 .465

50 .231 .273 .322 .354 .443

60 .211 .250 .295 .325 .408

70 .195 .232 .274 .302 .380

80 .183 .217 .256 .283 .357

90 .173 .205 .242 .267 .338

100 .164 .195 .230 .254 .321

125 .147 .174 .206 .228 .288

150 .134 .159 .189 .208 .264

200 .116 .138 .164 .181 .235

300 .095 .113 .134 .148 .188

500 .074 .088 .104 .115 .148

1000 .052 .062 .073 .081 .104

2000 .037 .044 .056 .058 .074

df 1-Tailed �: .05 .025 .01 .005 .0005

These are the critical values for testing the null hypothesis that r � 0
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Appendix: Theoretical Sampling Distribution Tables

TABLE 7 Transformation of r to zr

r zr r zr r zr r zr r zr

.000 .000 .200 .203 .400 .424 .600 .693 .800 1.1099

.005 .005 .205 .208 .405 .430 .605 .701 .805 1.113

.010 .010 .210 .213 .410 .436 .610 .709 .810 1.127

.015 .015 .215 .218 .415 .442 .615 .717 .815 1.142

.020 .020 .220 .224 .420 .448 .620 .725 .820 1.157

.025 .025 .225 .229 .425 .454 .625 .733 .825 1.172

.030 .030 .230 .234 .430 .460 .630 .741 .830 1.188

.035 .035 .235 .239 .435 .466 .635 .750 .835 1.204

.040 .040 .240 .245 .440 .472 .640 .758 .840 1.221

.045 .045 .245 .250 .445 .478 .645 .767 .845 1.238

.050 .050 .250 .255 .450 .485 .650 .775 .850 1.256

.055 .055 .255 .261 .455 .491 .655 .784 .855 1.274

.060 .060 .260 .266 .460 .497 .660 .793 .860 1.293

.065 .065 .265 .271 .465 .504 .665 .802 .865 1.313

.070 .070 .270 .277 .470 .510 .670 .811 .870 1.333

.075 .075 .275 .282 .475 .517 .675 .820 .875 1.354

.080 .080 .280 .288 .480 .523 .680 .829 .880 1.376

.085 .085 .285 .293 .485 .530 .685 .838 .885 1.398

.090 .090 .290 .299 .490 .536 .690 .848 .890 1.422

.095 .095 .295 .304 .495 .543 .695 .858 .895 1.447

.100 .100 .300 .310 .500 .549 .700 .867 .900 1.472

.105 .105 .305 .315 .505 .556 .705 .877 .905 1.499

.110 .110 .310 .321 .510 .563 .710 .887 .910 1.528

.115 .116 .315 .326 .515 .570 .715 .897 .915 1.557

.120 .121 .320 .332 .520 .576 .720 .908 .920 1.589

.125 .126 .325 .337 .525 .583 .725 .918 .925 1.623

.130 .131 .330 .343 .530 .590 .730 .929 .930 1.658

.135 .136 .335 .348 .535 .597 .735 .940 .935 1.697

.140 .141 .340 .354 .540 .604 .740 .950 .940 1.738

.145 .146 .345 .360 .545 .611 .745 .962 .945 1.783

.150 .151 .350 .365 .550 .618 .750 .973 .950 1.832

.155 .156 .355 .371 .555 .626 .755 .984 .955 1.886

.160 .161 .360 .377 .560 .633 .760 .996 .960 1.946

.165 .167 .365 .383 .565 .640 .765 1.008 .965 2.014

.170 .172 .370 .388 .570 .648 .770 1.020 .970 2.092

.175 .177 .375 .394 .575 .655 .775 1.033 .975 2.185

.180 .182 .380 .400 .580 .662 .780 1.045 .980 2.298

.185 .187 .385 .406 .585 .670 .785 1.058 .985 2.443

.190 .192 .390 .412 .590 .678 .790 1.071 .990 2.647

.195 .198 .395 .418 .595 .685 .795 1.085 .995 2.994
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Appendix: Theoretical Sampling Distribution Tables

TABLE 8 Critical Values for Spearman’s Rho (rS), for N � 5 to 30

Test Level of Significance

N 2-Tailed �: 
(1)

.10 
(2)

.05 
(3)

.02 
(4)

.01 
(5)

5 .900 1.000 1.000 —

6 .829 .886 .943 1.000

7 .714 .786 .893 .929

8 .643 .738 .833 .881

9 .600 .683 .783 .833

10 .564 .648 .746 .794

12 .506 .591 .712 .777

14 .456 .544 .645 .715

16 .425 .506 .601 .665

18 .399 .475 .564 .625

20 .377 .450 .534 .591

22 .359 .428 .508 .562

24 .343 .409 .485 .537

25 .337 .398 .465 .510

26 .329 .392 .456 .515

28 .317 .377 .448 .496

30 .306 .363 .432 .467

N 1-Tailed �: .05 .025 .01 .005

These are the critical values for testing the null hypothesis that rs � 0; note that column 1 specifies the number of
pairs of scores (N), not degrees of freedom. The critical values are both � and � for two-tailed tests.
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APPENDIX
Tables for Power Analyses

Table 1 Power Table for d
Table 2 Power Tables for One-Way Between-Groups ANOVA for α � .05

Table 3 Power Tables for One-Way Within-Groups (Repeated Measures) ANOVA for α � .05

Table 4 Power Tables for Chi-Square Tests as a Function of Population Values of Cramér’s V 
(� � .05)*

TABLE 1 Power Table for d

Sample Size Estimatesa to Achieve Specified Power, for Two Levels of Alpha for a Two-Tailed Test, 
for Various Effect Sizes (d ) in a Two-Group Mean Situation

Cohen’s db

1Power � .60 Power � .70 Power � .80 Power � .90

� � .10 � � .05 � � .10 � � .05 � � .10 � � .05 � � .10 � � .05

.05 2879 3915 3757 4929 4969 6304 6854 8409

.10 720 979 940 1233 1243 1576 1714 2103

.15 320 435 418 548 553 701 762 935

.20 180 245 235 309 311 394 429 526

.25 116 157 151 198 199 253 275 337

.30 80 109 105 137 139 176 191 234

.35 59 80 77 101 102 129 140 172

.40 45 62 59 78 78 99 108 132

.45 36 49 47 61 62 78 85 104

.50 29 40 38 50 50 64 69 85

.55 24 33 32 41 42 53 57 70

.60 20 28 27 35 35 44 48 59

.65 18 24 23 30 30 38 41 50

.70 15 20 20 26 26 33 35 43

.75 13 18 17 22 23 29 31 38

.80 12 16 15 20 20 25 27 33

.85 10 14 13 18 18 22 24 30

.90 9 13 12 16 16 20 22 26

1.00 8 10 10 13 13 16 18 22

1.10 6 9 8 11 11 14 15 18

1.25 5 7 7 8 8 11 11 14

aSample size requirements are shown for each group; equal number of cases per group is assumed.
bThe estimated effect size (d ) is the estimated difference between the two population means, divided by the
estimated population standard deviation, calculated with sample data as d � (M1 � M2)/SD.

From Appendix B of Statistics and Data Analysis for Nursing Research, Second Edition. Denise F. Polit. Copyright © 2010

by Pearson Education, Inc. All rights reserved.
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Appendix: Tables for Power Analyses

TABLE 2 Power Tables for One-Way Between-Groups ANOVA for � � .05

A. Number of Groups � 4a

Population Eta-Squared

POWER .01 .03 .05 .07 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80

.10 21 7 5 4 3 2 2 2 – – – – – –

.50 144 48 28 20 14 9 7 5 4 3 2 2 2 –

.70 219 72 43 30 21 13 10 8 6 4 3 2 2 2

.80 272 90 53 37 26 17 12 9 7 5 4 3 2 2

.90 351 115 68 48 33 21 15 12 9 6 5 3 3 2

.95 426 140 83 58 40 25 18 14 11 7 5 4 3 2

.99 583 191 113 79 54 34 24 19 15 10 7 5 4 2

B. Number of Groups � 5

Population Eta-Squared

POWER .01 .03 .05 .07 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80

.10 19 7 5 3 3 2 2 2 – – – – – –

.50 128 43 25 18 13 8 6 5 4 3 2 2 2 –

.70 193 64 38 27 18 12 9 7 6 4 3 2 2 2

.80 238 78 46 33 23 15 10 8 7 5 3 3 2 2

.90 306 101 59 42 29 18 13 10 8 6 4 3 2 2

.95 369 121 72 50 34 22 16 12 10 7 5 3 3 2

.99 501 164 97 68 46 30 21 16 13 9 6 4 3 2

C. Number of Groups � 6

Population Eta-Squared

POWER .01 .03 .05 .07 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80

.10 18 7 4 3 3 2 – – – – – – – –

.50 117 39 23 17 12 8 6 5 4 3 2 2 2 –

.70 174 57 34 24 17 11 8 6 5 4 3 2 2 2

.80 213 70 42 29 20 13 9 7 6 4 3 2 2 2

.90 273 90 53 37 26 17 12 9 7 5 4 3 2 2

.95 328 108 64 45 31 20 14 11 9 6 4 3 3 2

.99 442 145 86 60 41 26 19 14 11 8 5 4 3 2

NOTE: Entries in body of table are for n, the number of participants per group.
aThe power table for eta-squared for three groups is presented in the text as Table 5 in the chapter "Analysis of
Variance."
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Appendix: Tables for Power Analyses

TABLE 3 Power Tables for One-Way Within-Groups (Repeated Measures) ANOVA for � � .05

A. Number of Measurements � 3

Population Eta-Squared

POWER .01 .03 .05 .07 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80

.10 32 11 7 5 4 3 2 2 2 – – – – –

.50 247 81 48 34 23 15 11 8 7 5 3 2 2 2

.70 382 125 74 52 36 23 16 13 10 7 5 3 3 2

.80 478 157 93 65 44 28 20 15 12 8 6 4 3 2

.90 627 206 121 85 58 37 26 20 16 10 7 4 4 3

.95 765 251 148 104 70 45 32 24 19 13 9 5 4 3

.99 1060 347 204 143 97 62 44 33 26 17 12 7 6 4

B. Number of Measurements � 4

Population Eta-Squared

POWER .01 .03 .05 .07 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80

.10 27 9 6 4 3 2 2 2 2 – – – – –

.50 191 63 37 27 18 12 9 7 5 4 3 2 2 –

.70 291 96 57 40 27 18 13 10 8 5 4 3 2 2

.80 361 118 70 49 34 22 16 12 9 6 5 3 3 2

.90 469 154 91 64 44 28 20 15 12 8 6 4 3 2

.95 568 186 110 77 53 33 24 18 14 10 7 5 3 2

.99 777 254 150 105 72 45 32 25 19 13 9 6 4 3

C. Number of Measurements � 5

Population Eta-Squared

POWER .01 .03 .05 .07 .10 .15 .20 .25 .30 .40 .50 .60 .70 .80

.10 24 8 5 4 3 2 2 2 2 – – – – –

.50 160 53 31 22 15 10 7 6 5 3 3 2 2 –

.70 241 79 47 33 23 15 11 8 7 5 3 3 2 2

.80 291 98 58 41 28 18 13 10 8 5 4 3 2 2

.90 382 126 74 52 36 23 16 13 10 7 5 4 3 2

.95 461 151 89 63 43 27 20 15 12 8 6 4 3 2

.99 626 205 121 85 58 37 26 20 16 10 7 5 4 3

NOTE: Entries in body of table are for n, the number of participants per group.
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Appendix: Tables for Power Analyses

TABLE 4 Power Tables for Chi-Square Tests as a Function of Population Values of Cramér’s V (� � .05)*

A. 2 � 2 Table

Population Value of Cramér’s V Statistic

POWER .10 .20 .30 .40 .50 .60 .70 .80 .90

.25 165 41 18 10 7 5 3 3 2

.50 385 96 43 24 15 11 8 6 5

.60 490 122 54 31 20 14 10 8 6

.70 617 154 69 39 25 17 13 10 8

.80 785 196 87 49 31 22 16 12 10

.85 898 224 100 56 36 25 18 14 11

.90 1051 263 117 66 42 29 21 16 13

.95 1300 325 144 81 52 36 27 20 16

.99 1837 459 204 115 73 51 37 29 23

B. 2 � 3 Table

Population Value of Cramér’s V Statistic

POWER .10 .20 .30 .40 .50 .60 .70 .80 .90

.25 226 56 25 14 9 6 5 4 3

.50 496 124 55 31 20 14 10 8 6

.60 621 155 69 39 25 17 13 10 8

.70 770 193 86 48 31 21 16 12 10

.80 964 241 107 60 39 27 20 15 12

.85 1092 273 121 68 44 30 22 17 13

.90 1265 316 141 79 51 35 26 20 16

.95 1544 386 172 97 62 43 32 24 19

.99 2140 535 238 134 86 59 44 33 26

C. 2 � 4 Table

Population Value of Cramér’s V Statistic

POWER .10 .20 .30 .40 .50 .60 .70 .80 .90

.25 258 65 29 16 10 7 5 4 3

.50 576 144 64 36 23 16 12 9 7

.60 715 179 79 45 29 20 15 11 9

.70 879 220 98 55 35 24 18 14 11

.80 1090 273 121 68 44 30 22 17 13

.85 1230 308 137 77 49 34 25 19 15

.90 1417 354 157 89 57 39 29 22 17

.95 1717 429 191 107 69 48 35 27 21

.99 2352 588 261 147 94 65 48 37 29

*The entries are sample size requirements to achieve the specified power.
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Appendix: Tables for Power Analyses

D. 3 � 3 Table

Population Value of Cramér’s V Statistic

POWER .10 .20 .30 .40 .50 .60 .70 .80 .90

.25 154 39 17 10 6 4 3 2 2

.50 321 80 36 20 13 9 7 5 4

.60 396 99 44 25 16 11 8 6 5

.70 484 121 54 30 19 13 10 8 6

.80 536 134 60 34 21 15 11 8 7

.85 671 168 75 42 27 19 14 10 8

.90 770 193 86 48 31 21 16 12 10

.95 929 232 103 58 37 26 19 15 11

.99 1262 316 140 79 50 35 26 20 16

E. 3 � 4 Table

Population Value of Cramér’s V Statistic

POWER .10 .20 .30 .40 .50 .60 .70 .80 .90

.25 185 46 21 12 7 5 4 3 2

.50 375 94 42 23 15 10 8 6 5

.60 460 115 51 29 18 13 9 7 6

.70 557 139 62 35 22 15 11 9 7

.80 681 170 76 43 27 19 14 11 8

.85 763 191 85 48 31 21 16 12 9

.90 871 218 97 54 35 24 18 14 11

.95 1043 261 116 65 42 29 21 16 13

.99 1403 351 156 88 56 39 29 22 17

F. 4 � 4 Table

Population Value of Cramér’s V Statistic

POWER .10 .20 .30 .40 .50 .60 .70 .80 .90

.25 148 37 16 9 6 4 3 2 2

.50 294 73 33 18 12 8 6 5 4

.60 357 89 40 22 14 10 7 6 4

.70 430 107 48 27 17 12 9 7 5

.80 522 130 58 33 21 14 11 8 6

.85 582 145 65 36 23 16 12 9 7

.90 661 165 73 41 26 18 13 10 8

.95 786 197 87 49 31 22 16 12 10

.99 1046 262 116 65 42 29 21 16 13

*The entries are sample size requirements to achieve the specified power.

TABLE 4 Power Tables for Chi-Square Tests as a Function of Population Values of Cramér’s V (� � .05)*
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230, 273, 320, 351, 387, 418
Condom use, 134, 225
Confidence interval, 22, 56, 86, 104-105, 110,
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COPD, 339
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Correlation, 22, 49-75, 123-124, 135-136, 160, 171,
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143-144, 146-147, 150, 155, 158-164,
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208-209, 211, 213-216, 218-220, 222-224,
226-232, 233-267, 269-272, 274-275,
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Variables, 1-2, 4-5, 9-10, 13-16, 18-22, 25-26, 28-31,
37-42, 44, 47, 49-54, 58-68, 70-72, 74-75,
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115, 126, 128-131, 135-138, 140, 148, 150,
154, 157, 160, 164, 167-170, 172-173,
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379-380, 384-386, 388-389, 393-401, 403,
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291, 293-295, 297, 301-302, 308-311,
316-319, 321-322, 342-343, 349, 352-353,
355, 357-359, 362-366, 368, 370, 372-378,
380-386, 388-389, 392, 398, 400, 414, 434

Ventilation, 39
Ventricular, 339
Ventricular tachycardia, 339
Version, 16, 132, 278, 370, 387, 399, 402, 404, 411,
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Viable, 42, 251
Violence, 64, 73, 162, 172

domestic, 73
school, 172

Visual, 5, 9, 77, 134, 212, 231, 239, 279-280, 317
Visual analog scale, 77, 212, 231, 280

Volume, 345
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Well-being, 38, 169-170, 229
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207, 226-227, 229-231, 234, 243, 268,
271-273, 299, 307-309, 318-321, 330, 335,
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397-398, 404-406, 409, 415-419

wood, 45, 273, 396, 418
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Y
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